Chiplets Open the World of Collaboration

Bob Brennan
VP, Customer Solutions Engineering, Intel Foundry Services

With technical contributions from:
Tak Abe, Bruce Fleming, Mark Gardner, Tanay Karnik, David Kehlet, Rob Munoz, Peter Onufryk, Edi Roytman, Debendra Das Sharma
Legal Notices and Disclaimers

Statements in this document that refer to future plans or expectations are forward-looking statements. These statements are based on current expectations and involve many risks and uncertainties that could cause actual results to differ materially from those expressed or implied in such statements. For more information on the factors that could cause actual results to differ materially, see our most recent earnings release and SEC filings at www.intc.com.

All product plans and roadmaps are subject to change without notice. Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Code names are often used by Intel to identify products, technologies, or services that are in development and usage may change over time. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others. This document contains information on products and/or processes in development.
Outline

- Industry Vision
- Technical Challenges
- Technology Needed
- Commercial Case Studies
Moore’s Predicted “Day of Reckoning”

“It may prove to be more economical to build large systems out of smaller functions, which are separately packaged and interconnected¹.”

-Gordon E. Moore

¹: “Cramming more components onto integrated circuits”, Electronics, Volume 38, Number 8, April 19, 1965
System on Chip -> System of Chips

“Catalyzing the Impossible: Silicon, Software, and Smarts for the SysMoore Era” – Dr. Aart de Geus

Google Cloud Blog*: A Chiplet Innovation Ecosystem for a New Era of Custom Silicon

Growing Demand for AI

What’s needed:

• Modularity
• Optimized Silicon and Package
• Open Standards, examples:
 ▪ IO
 ▪ Protocols
 ▪ Security
 ▪ Management

Growing Demand for Video

(YouTube, Live Streaming)

*https://cloud.google.com/blog/topics/systems/open-chiplet-ecosystem-powering-next-era-of-custom-silicon

Image credit: Google

*https://cloud.google.com/blog/topics/systems/open-chiplet-ecosystem-powering-next-era-of-custom-silicon

Google Tensor Processing Unit

Google Video Coding Unit

Image credit: Google
Intel Vision: The “Chiplet Revolution”

Open Chiplet: Platform on a Package

- Customer IP and Customized Chiplets
- High-Speed Standardized Chip-to-Chip Interface (UCle)
- 10X I/O Performance at 1/10th Power*
- Advanced 3D Packaging

*relative to PCIe G5 x16
Motivation: Cost & Manufacturing Optimization

Input Variables:
- Die Area
- # of Chiplets
- Wafer Cost
- Defect Density
- Package/Assembly/Test
- Known Good Die
- Die Area Tax & Overhead

"Heterogeneous Integration of Chiplets: Cost and Yield Tradeoff Analysis"

Source: Intel Model
Motivation: Process Technology Optimization

Density

Leakage

High-Voltage

Passive

Source: Intel

-- Logic/Memory
-- IO
-- RF
-- Mixed-signal

Source: Intel
Motivation: AI Memory BW/Power Gap

- Insatiable Memory Bandwidth
- The energy efficiency gap is getting bigger
Motivation: R&D Cost and Product Velocity

Move from Exponential -> Linear with modularity and reuse
Motivation: Optimize System Level High Speed IO

Source: Intel
Technology Needed
Open Ecosystem
New Development Model: System on Chip -> System of Chips
UCle Open Interconnect & Packaging

INITIAL FOCUS
- Physical Layer: Die-to-Die I/O with industry leading KPIs
- Protocol: CXL/PCIe for near-term volume attach
- Well-defined specification: ensure interoperability & evolution

FUTURE GOALS
- Additional protocols (ex. CHI)
- Advanced chiplet form-factors
- Chiplet management
- Security
- And much more!

Different flavors of packaging options supported to build an open ecosystem
Open Protocols for xPU

DMA Only

Asymmetric Coherency (CXL.$)

(Hypothetical) Symmetric Coherency

CPU

Symmetric Coherency

xPU

CXL.MEM

IO
New Open Software Stack for Heterogenous Computing

Device Driver Model

Asymmetric Coherency (CXL.$)

(Hypothetical) Symmetric Coherency

- DMA Only
- Asymmetric Coherency (CXL.$)
- (Hypothetical) Symmetric Coherency

Applications / Tools
- Inference
- ML/Training
- Database
- ...

Middleware
- Multimedia
- OneAPI
- Sys Libraries
- ...

OS Services
- Filesystem
- Networking
- Networking
- UI

Kernel
- CPU Mgt (Scheduler)
- Memory Mgt
- Drivers HW Mgt
- Security

Applications / Tools
- Inference
- ML/Training
- Database
- ...

Middleware
- Multimedia
- OneAPI
- Sys Libraries
- ...

OS Services
- Filesystem
- Networking
- Networking
- UI

Kernel
- CPU Mgt (Scheduler)
- Memory Mgt
- Drivers HW Mgt
- Security

Applications / Tools
- Inference
- ML/Training
- Database
- ...

Middleware
- Multimedia
- OneAPI
- Sys Libraries
- ...

OS Services
- Filesystem
- Networking
- Networking
- UI

Kernel
- CPU Mgt (Scheduler)
- Memory Mgt
- Drivers HW Mgt
- Security

Device Driver Model

Middleware -> Device

Peer-Peer Graphed Execution
Chiplets
Industry Case Studies & Representative Applications
Case Study: Intel Client, Lakefield 3D Foveros

ex. Market Segmentation (GFX, Memory), Process Optimization

<table>
<thead>
<tr>
<th></th>
<th>Y SKU Gen-1</th>
<th>Y SKU</th>
<th>LKF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Package</td>
<td>20.5x16.5</td>
<td>26.5x18.5</td>
<td>12x12</td>
</tr>
<tr>
<td>Memory</td>
<td>LP3 11x11.5</td>
<td>LP4-4x 12.5x12.5</td>
<td>LP4-4x POP</td>
</tr>
</tbody>
</table>
Case Study: Intel HPC - Ponte Vecchio

ex. Complexity Management, Process Optimization
IO Optimization: Intel Optical

ex. Network Optimization through Modularity
Sensor Case Study: Radar Beamforming Application

- **Digital Receiver / Exciter**
 - ADC
 - DAC
 - LNA
 - Duplex
 - Power Amp

- **Signal Processing**
 - DDC
 - DUC
 - Phase Shift & Beam Weights
 - Pulse / Waveform Generator

- **Data Processing**
 - Summation & Pre-detect
 - Beam Weights
 - Target Detection
 - Fusion, Compensation, Target Tracking

- **System Control**
 - System Control
 - Acceleration & Bridging

- **Multi-Channel**
 - Multi-Channel

- **Analog**
 - Data Converter Tile

- **Direct RF FPGA**
 - Intel® Stratix® 10
 - Intel® Xeon®

- **Applications**
 - Control
 - Power
 - Display
 - Comms

HiPChips Chiplet Workshop @ ISCA 2022
IO Case Study: Disaggregated PCIe & Memory

ex. Optimization of Process (ex. Analog), Supply Chain
IO Case Study: Possible HBM Architecture

Optimize: AI Bandwidth/Power Density, AI Thermals
Server Case Study: Multi-core uServer

Ex. Multi-Protocol Architecture: CXL/UCIe and CHI/UCIe
Networking/Storage Case Study: IPU/DPU

Ex. Multi-Protocol Architecture: AXI/UCle; Networking Modularity
AI Case Study: Caching Inference Architecture

Ex. DMA, Asymmetric Coherence, Symmetric Coherence

- Ex. DMA, Asymmetric Coherence, Symmetric Coherence
Summary

• Industry Vision – we are at an inflection point
• Technical Challenges – die size, process, IO, and R&D $ optimization
• Technology Needed – CAD tools, Distributed Coherency, Software, Interconnect, Packaging
• Commercial Case Studies – many new emerging architectures, it’s just the beginning, let’s collaborate!
Thank you