

Mixed Environment, Hybrid, **Edge Data Centres**

Tim Chambers, CEO/Founder, coolDC Don Mitchell, DC Division Manager, Victaulic

What is the data centre of the future?

- Capable of meeting demand of digital expansion to all areas of everyday life.
- Consumer driven: increasingly requiring high density, high performance compute.

Scale

Physical footprint

- Lots of racks.
- Lots of data centres.

Energy footprint

• In 2016, it was estimated that data centres used 3% of the global energy supply, with consumption expected to treble by mid-2020s.

Carbon footprint

 Data centre industry generates up to 2% of global CO₂ emissions = aviation industry (EU, 2017).

Considerations for build

- Location
- Power source
- Heat re-use potential
- IT equipment
- Appropriate cooling.

Modular approach

- All areas can be modularized.
- Build as required.
- IT requirement to drive the design.

Reconceptualising 'waste' heat

Immersion

Rear Door On-Chip

In-Rack In-Row HPC

Hot Aisle OCP

Hot Aisle

High grade heat

- Usable bi-product.
- Avoid wasting valuable resources.
- Once heat reaches 60°C it has a variety of uses.

Heat exchangers

- Variable flow rates.
- Definable inlet and outlet temperatures.

Cooling Technologies 1

- Mix and match solutions.
- Best match to IT load.
- Aggregated to temperature.

Immersion

Rear Door On-Chip

In-Rack In-Row HPC

Hot Aisle OCP

Hot Aisle

Cooling Technologies 2

Increase of water temperature through IT deployment

Pipes & cables

- Modular busbar 410/630A.
- Sizing pipes and valves.

Immersed cooling is real

- Chip manufactures taking notice.
- End user confidence growing.
- Engineers love it.
- Can be incorporated into existing DC infrastructures.

Power, money & space

Live example - LDC

- Hybrid Design.
- OCP/HPC.
- CEEDA Gold Design & Operate, 2019.
- EUCoC Award winner, 2019.
- Global DCD Energy Smart winner, 2019

Sample design - LDC

- Mixed-use hybrid environment.
- Raising temperature of surplus heat for in-house energy reuse.

OCP Hot Aisle - LDC

- Rittal LCP.
- 12v and 48v.
- 10kW up to 40kW
- Zuta Core On Chip

DC of the Future: Prerequisites

- Smaller in scale, but with no loss in power density.
- Energy efficient.
- Carbon neutral.
- Maintained by a younger more agile - generation of engineers competent in both mechanical and IT.

Take away/lessons learnt

- BMS is key.
- MODBUS a necessity.
- Measurement of flow/return per phase.
- Manufacturer partnership.

IReg	Processvalues	Temperature of the oil Left Top	TempOlie_LB_C	600 °C	4 REAL64	R
IReg	Processvalues	Temperature of the oil Left Bottom	TempOlie_LO_C	604 °C	4 REAL64	R
IReg	Processvalues	Temperature of the oil Middle Top	TempOlie_MB_C	608 °C	4 REAL64	R
IReg	Processvalues	Temperature of the oil Middle Bottom	TempOlie_MO_C	612 °C	4 REAL64	R
IReg	Processvalues	Temperature of the oil Right Top	TempOlie_RB_C	616 °C	4 REAL64	R
IReg	Processvalues	Temperature of the oil Right Bottom	TempOlie_RO_C	620 °C	4 REAL64	R
IReg	Processvalues	Temperature of water input left	TempWaterIn_S1_C	624 °C	4 REAL64	R
IReg	Processvalues	Temperature of water input right	TempWaterIn_S2_C	628 °C	4 REAL64	R
IReg	Processvalues	Temperature of water output left	TempWaterUit_S1_C	632 °C	4 REAL64	R
IReg	Processvalues	Temperature of water output right	TempWaterUit_S2_C	636 °C	4 REAL64	R
IReg	Processvalues	Flow of water left	FlowWater_S1_C	640 I/m	4 REAL64	R
IReg	Processvalues	Flow of water right	FlowWater_S2_C	644 I/m	4 REAL64	R
IReg	Processvalues	Pressure of water left	FlowPressure_S1_C	648 bar	4 REAL64	R
IReg	Processvalues	Pressure of water right	FlowPressure_S2_C	652 bar	4 REAL64	R
IReg	Processvalues	Level switch status (1:lowlow 2:low 3:normal 4: high 5: highigh)	LevelSwitch_C	656	4 REAL64	R
DISC	Processvalues	Water detected status	WaterDetected C	660	1 BOOL8	R

Call to Action

Timelines for following documents -

- ACS Hybrid DC requirements document July 2020
- ACS Hybrid DC white paper Sept 2020
- (Update of Data Centre of the Future Whitepaper)
- ACS Hybrid DC Design Document December 2020

Links

- https://www.cooldc.co.uk
- https://www.victaulic.com
- http://www.opencompute.org

