Chiplet use cases in AI and ML Why, how and what of chiplets for AI/ML space

Jan 24th, 2023

Dharmesh Jani ("DJ")

Infrastructure Partnerships/Ecosystems Lead @ Meta

Arc of the talk

Arc of the talk

Universal Human Use Cases

drivers?

Mining

Fundamental use cases have recurring theme of recognition, mining and synthesis for learning and knowledge creation

Synthesis

Recognition

Build identification models by machines of realworld

Recognition is the "what is" and create a canonical representative model

Requires training!

Most advanced AI-powered translation systems today typically

Mining

Search instances of the model in the sea of data

Mining is searching across all forms of data (e.g., Image, text, video, logs etc.)

Requires inference!

$\bullet \bullet \bullet$

Synthesis

Creating new instance of models where one does not exist

Synthesis is creation by machines of new ideas

Requires multi-modality, GANs!

Arch of the talk

Growth of the term "deep learning" in research

Growth of the term "deep learning" in research

Cambrian Explosion of Workloads

Bio-Diversity Exploded from single cells into multicell organisms during the Cambrian explosion; all major phylla were established in this transition

Al and Machine-learning and data-heavy workloads have exploded in 7 years and will diversify as new applications are discovered constantly...

What are the dominant AI serving workloads?

Current and emergent

- Ranking and recommendation
 - News feed and Search
- Computer Vision
 - Image classification, object detection
- Language
 - Translation, speech recognition
- Multi-modal
 - Metaverse synthesis

Arc of the talk

Domain Specific Accelerators

ACCELERATOR WORKLOAD UNIT

*ignoring the CPU, NICs, SSDs, and everything else...

ACCELERATOR WORKLOAD UNIT

*ignoring the CPU, NICs, SSDs, and everything else...

ACCELERATOR WORKLOAD CLUSTER

FRONT END NETWORK

FRONT END NETWORK

DEEP LEARNING WORKLOADS - CHARACTERISTICS

SOURCE: Meta Keynote at OCP Global Summit Oct 2022

Arc of the talk

Key challenges for DSAs to address

Training based on DSA

Training based on DSA

Memory and Network Lagging Compute

SCALING OF PEAK HARDWARE FLOPS, AND MEMORY/INTERCONNECT BANDWIDT Η

Challenges for AISystem to address

DSA Performance Accelerator-Memory gap

Model Flexibility HW/SW co-design

Networking BW Switching cross sectional BW

Arc of the talk

DSA Performance Accelerator-Memory gap

DSA Performance Accelerator-Memory gap

DSA Performance Accelerator-Memory gap

Model Flexibility HW/SW co-design

Networking BW Switching cross sectional BW

LOW POWER HIGH RADIX **OPTO ELECTRICAL SWITCH**

Networking BW Switching cross sectional BW

SMART NIC TRAFFIC OFF-LOAD ACCELERATOR

Holy Grail it is not... Apologies to Monty Python!

