Welcome

OCP ODSA Project Workshop September 12, 2019

IBM has a long history in supporting open initiatives...

IBM expands open hardware ecosystem with major contributions to community

OpenPOWER Summit NA August 20, 2019

Open POWER ISA:

Opening POWER Instruction Set Architecture (ISA), inclusive of patent rights.

Open Reference Designs:

Open sourcing a softcore implementation of the POWER ISA as well as reference designs for the architectureagnostic Open Coherent Accelerator Processor Interface (OpenCAPI) and Open Memory Interface (OMI).

Open Governance:

OpenPOWER Foundation joining the Linux Foundation

Where can I find?

OpenPOWER Foundation https://openpowerfoundation.org/

OpenPOWER Summit EU 2019 – October 31-November 1 Register Today! <u>https://events.linuxfoundation.org/events/openpower-summit-eu-2019/</u>

OpenCAPI Consortium https://opencapi.org/

POWER ISA Softcore https://github.com/antonblanchard/microwatt

OpenCAPI and OMI Reference Designs – Going live today! <u>https://github.com/OpenCAPI</u> OpenCAPI3.0_Device_RefDesign omi_host_fire omi_device_ice

Exploiting Composable Heterogeneity through Open Architectures

Jeff Stuecheli Josh Friedrich

Chiplet Design Opportunities

Chip disaggregation

- Cost reduction
- Modularity
- Optimized technology use
- Latency reduction

System integration

- More efficient connectivity
- Overcome reticle limit
- Increased system density
- Heterogenous integration

Chiplet Benefits: Cost

Chiplet Benefits: SoC Modularity POWER9 Processor Family

- Any revision requires new processor tapeout, test pattern generation, and qualification.
- Integration of new IP can create disruptive changes to chip infrastructure.
- Moving any IP to next technology requires full chip to be re-designed for next node.

Chiplet Benefits: Potential Package-Level Modularity

- IP providers deliver tested physical chiplet vs. design IP needing integration
 - Avoids time-consuming & expensive re-integration into SoC
- Durable IP blocks avoid change

Chiplet Benefits: Technology Use Optimization

Silicon-bound area

Base technology elements (logic devices, SRAMs)

Power/performance sensitive

Functionally resilient to model inaccuracy

Rich technology menu (passives, multi-oxide, etc)

Low power density

Functionally sensitive to model-to-hardware

Chiplet Benefits: Latency Optimization

~0.5ns transport delay

Module wiring offers >10x advantage in time of flight over best on-chip transport.

Chiplet Design Opportunities

Chip disaggregation

- Cost reduction
- Modularity
- Optimized technology use
- Latency reduction

System integration

- More efficient connectivity
- Overcome reticle limit
- Increased system density
- Heterogenous integration

Chiplet Benefits: More Efficient Connectivity

 Board level integration requires robust SERDES to handle complex channels, minimize wire counts, etc.

Chiplet provides opportunity to significantly improve connectivity

 Need a range of options to optimize latency, power, and chip resources

■ Wide, On-module Bus

Interface Comparison

Chiplet Benefits: Breaking Reticle Limit

SoC integration is limited by transistors in the reticle.

As density improvement has slowed, die size has grown to compensate, but this is approaching its limit. Integration leveraging advanced packaging technologies and chiplet design provides an anecdote.

Chiplet Benefits: Increased Density

Simple opportunity created by exceeding the reticle is to increase compute density, but this approach has limits.

Chiplet Benefits: Heterogenous Integration

Leverage heterogenous chiplets to deliver value

- Right compute for all facets of a job
- Diverse technologies to maintain system balance
- Extreme connectivity through advanced packaging
- Simpler demands on IP chiplet providers vs. delivering full SoC

Chiplet Challenges & Requirements

Broad range of packaging innovation

• Open PHY & protocol standards

Cooling & current delivery

Robust test infrastructure

Standards + tooling

Business ecosystem

Chiplet Requirements: Packaging & Silicon Aggregation Innovations

Silicon Area per Module: Depends on laminate capability, yield, manufacturing economics
End-to-end Intra-connect Latency: Depends on total silicon radius, internal/external bandwidth
External Bandwidth Escape: Depends on internal/external Intra-connect split, system interface rqmts
Internal Bandwidth Density: Depends on internal/external Intra-connect split, system interface rqmts
Granularity of Composability: Depends on chipset flexibility and composability rqmts

Technology optimization varies depending on silicon, latency, and bandwidth needs:

Chiplet Requirements: Cooling & Current Delivery

- Power/socket has grown significantly over the last decade.
- Power/socket growth will continue to accelerate.
 - Slowing silicon scaling
 - Vmin limitations
 - Dense compute acceleration
- Chiplet design adds significant complexities.
 - Greater than reticle integration
 - Large instantaneous currents from IP activity changes
 - Large # of voltage supplies to support heterogenous IP
- Continued investment in solutions is necessary.
 - Cost-effective cooling solutions
 - Efficient in-package voltage regulation

Chiplet Requirements: Test Innovation

Chiplet Requirements: Standards & Tooling

- Robust support for today's SoC ecosystem
 - Standards: VHDL/Veriflog, Oasis/GDS, UPF,
 - Tooling: DRC, LVS, ERC, static timing, noise, power, thermal, etc.
- Similar support needed to support rapid integration of chiplets at package level
 - Power & thermal models for cooling & current delivery
 - Electrical models for noise analysis and signal integrity
 - Mechanical models to study package stress

Thermal Models

Signal Integrity

Mechanical Stress

Chiplet Requirements: Business Models

Opportunities

Improved solutions Increased volume

Focused investment

_.

Time-to-market

Challenges

Supply chain continuity Test ownership Field support & debug Warranty & liability Chiplet Requirements: Open Interconnect Protocol

- Architecture agnostic
- Asymmetric
- Latency optimized
- Flexible
- Robust, silicon-proven

Open Standards for Servers

- Diss-aggregation of chiplets into customized form factors
 - CPU socket,
 - Memory DIMM: Existing standards difficult specialize
 - Determinism prevents flexibility
 - PCIe: Open standard with long standing compatibility and flexibility
 - high latency in hw and sw
 - Limited power and cooling
 - OMI (Open Memory Interface): Enables flexible memory standards
 - SerDes protocol provided ~5x reduction in host IO overhead
 - OAM: Emerging standard has great potential
 - One physical standard, multiple DL/TL.
 - Variability in protocol and topology complicates systems

POWER9 – Acceleration Platform

- Extreme Processor / Accelerator Bandwidth and Reduced Latency
- Coherent Memory and Virtual Addressing Capability for all Accelerators
- OpenPOWER Community Enablement Robust Accelerated Compute Options
- State of the Art I/O and Acceleration Attachment Signaling
 - PCle Gen 4 x 48 lanes 192 GB/s duplex bandwidth
 - 25 G Common Link x 96 lanes 600 GB/s duplex bandwidth
- <u>Robust Accelerated Compute Options with OPEN standards</u>
 - **On-Chip Acceleration** Gzip x1, 842 Compression x2, AES/SHA x2
 - CAPI 2.0 4x bandwidth of POWER8 using PCIe Gen 4
 - NVLink Next generation of GPU/CPU bandwidth
 - **OpenCAPI** High bandwidth, low latency and open interface
 - **OMI** High bandwidth and/or differentiated for acceleration

25

POWER9

PowerAccel

POWER9 Family Memory Architecture

Primary Tier Memory Options

DRAM DIMM Comparison

IBM Centaur DIMM

Open Memory Interface (OMI)

- Signaling: 25.6GHz vs DDR4 @ 3200 MHz
 - 4x raw bandwidth per I/O signal
 - 1.3x mixed traffic utilization
- Idle load-to-use latency over traditional DDR:
 - POWER8/9 Centaur design ~10 ns
 - OMI target of ~5-10 ns (RDIMM)
 - OMI target of < 5ns (LRDIMM)
- IBM Centaur: One proprietary DMI design
- Microchip SMC 1000:
 - Open (OMI) design
 - Emerging JEDEC Standard

OpenCAPI Design Goals

- Designed to support range of devices
 - Coherent Caching Accelerators
 - Network Controllers
 - Differentiated Memory
 - High Bandwidth
 - Low Latency
 - Storage Class Memory
 - Storage Controllers

- Asymmetric design, endpoint optimized for host and device attach
 - **ISA of Host Architecture**: Need to hide difference in Coherence, Memory Model, Address Translation, etc.
 - **Design schedule:** The design schedule of a high performance CPU host is typically on the order of multiple years, conversely, accelerator devices have much shorter development cycles, typically less than a year.
 - Timing Corner: ASIC and FPGA technologies run at lower frequencies and timing optimization as CPUs.
 - **Plurality of devices:** Effort in the host, both IP and circuit resource, have a multiplicative effect.
 - Trust: Attached devices are susceptible to both intentional and unintentional trust violations
 - Cache coherence: Hosts have high variability in protocol. Host cannot trust attached device to obey rules.

OpenCAPI 4.0: Asymmetric Open Accelerator Attach

Roadmap of Capabilities and Host Silicon Delivery

Accelerator Protocol	CAPI 1.0	CAPI 2.0	OpenCAPI 3.0	OpenCAPI 4.0	OpenCAPI 5.0
First Host Silicon	POWER8 (GA 2014)	POWER9 SO (GA 2017)	POWER9 SO (GA 2017)	POWER9 AIO (GA 2020)	POWER10 (GA 2021)
Functional Partitioning	Asymmetric	Asymmetric	Asymmetric	Asymmetric	Asymmetric
Host Architecture	POWER	POWER	Any	Any	Any
Cache Line Size Supported	128B	128B	64/128/256B	64/128/256B	64/128/256B
Attach Vehicle	PCle Gen 3 Tunneled	PCle Gen 4 Tunneled	25 G (open) Native DL/TL	25 G (open) Native DL/TL	32/50 G (open) Native DL/TL
Address Translation	On Accelerator	Host	Host (secure)	Host (secure)	Host (secure)
Native DMA to Host Mem	No	Yes	Yes	Yes	Yes
Atomics to Host Mem	No	Yes	Yes	Yes	Yes
Host Thread Wake-up	No	Yes	Yes	Yes	Yes
Host Memory Attach Agent	No	No	Yes	Yes	Yes
Low Latency Short Msg	4B/8B MMIO	4B/8B MMIO	4B/8B MMIO	128B push	128B push
Posted Writes to Host Mem	No	No	No	Yes	Yes
Caching of Host Mem	RA Cache	RA Cache	No	VA Cache	VA Cache

Summary: Taking a step back...

- Disaggregation trend
 - ~Rack scale: Separate components into pools
 - Memory, CPU, GPU, storage
 - Enables agile deployment
 - Interface Goal: Make ~rack scale appear as board level
- Chiplet trend
 - Example: SOC like, but only build what is needed, buy standard components.
 - Interface Goal: On die like communication (energy, bandwidth)
- Shared goals
 - Heterogeneous Si
 - Efficient flexible protocol layers
 - Probably on application optimized physical layer

