Universal Quick Disconnect Blind-Mate
Fluid Connector Development, Testing and Specification
Universal Quick Disconnect Blind-Mate
Fluid Connector Development, Testing and Specification

Mark Sprenger, Tech Lead, Intel
Jordan Johnson, Mechanical Engineer, Intel
Starting in 2017 Intel engaged with OCP industry partners to enable liquid cooling ingredients

• Hand-mate Universal Quick Disconnects Specification: approved 2020
 Specification presented at OCP Global Summit 2019

• Blind-mate Universal Quick Disconnects Whitepaper and Specification Approved 2021

• UQDB was presented in ACS Cold Plate call and OCP Incubation Committee
Intel’s Eco-System Enabling

Focus: Manifold Distributed Liquid Cooling Ingredients

Technology Cooling System (TCS) = Cooling Loop from CDU through the rack/IT equipment

Facility Water System (Primary Side)

Cooling Fluid

Cooling Distribution Unit (CDU)

Liquid-to-Liquid

Universal Quick Disconnects (UQD) and Blind-mate UQDs (UQDB)

Rear View

Server Rack

TCS Cooling Ingredients:
- Cooling Fluid
- Universal Quick Disconnects (UQDs)
- Blind-Mate Universal Quick Disconnects (UQDBs)
- Cooling Distribution Units (CDUs)
Problem Statement: Currently fluid connectors for electronics cooling are proprietary and non-interchangeable. Servers must be sourced with customized SKU (mfg. part no. connector) to interface with the cabinets.

UQDB Adds Value to Electronics Cooling Industry

- Eliminates need for single sourced proprietary parts
- Simplifies the supply chain
- Global availability with sourcing in, Europe, US, China
- Refresh simplified
- New components can easily be added to the liquid circuit
- Encourages suppliers to innovate
- Common and interchangeable – improves adoptability
- All parts meet the expected performance

Multi-Sourced Universal Quick Disconnect Blind-Mate
UQDB Dimensions

- Minimum set of prescribed dimensions
- Each supplier can differentiate on self-alignment mechanism and internal flow geometry
- Geometry allows multiple self-alignment features, enabling design flexibility for suppliers to differentiate
UQDB Requirements & Performance Testing

To verify interchangeability among suppliers:
- Performance requirements specifically derived for the electronics cooling industry
- The specified requirements address performance criteria for Pressure, Flow Rate, Temperature, Cv (Flow Coefficient), Durability, and life

<table>
<thead>
<tr>
<th>Parameter</th>
<th>UQDB02</th>
<th>UQDB04</th>
<th>UQDB06</th>
<th>UQDB08</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum operating pressure</td>
<td></td>
<td>100 psi</td>
<td></td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>Minimum burst pressure</td>
<td></td>
<td>300 psi</td>
<td></td>
<td></td>
<td>Required</td>
</tr>
<tr>
<td>Minimum Cv<sup>3</sup> at minimum engagement</td>
<td>0.25</td>
<td>0.80</td>
<td>1.55</td>
<td>2.40</td>
<td>Required</td>
</tr>
</tbody>
</table>

Flow Rating⁴
- At least 0.55 GPM
- At least 1.7 GPM
- At least 3.0 GPM
- At Least 4.7 GPM

Recommended Manufacturer discretion (ratings shall be published by supplier)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range<sup>5</sup></td>
<td>17°C - 65°C</td>
<td>Required</td>
</tr>
<tr>
<td>Shipping temperature range<sup>6</sup></td>
<td>-40°C – 75°C</td>
<td>Required</td>
</tr>
</tbody>
</table>

¹ Cv are reported for water.
² Flow rating is for water.
³ Support for higher temperature range is desirable as an option as there are known solutions that may operate in the range 17°C - 75°C. It is expected that rating would be published by supplier.
⁴ Shipping may include charged systems.

\[
C_v = Q \sqrt{\frac{SG}{\Delta P}}
\]

\[
Q = C_v \sqrt{\Delta P}
\]

- Measure: flow rate, pressure drop
Test Setup

- Hose length calculated for uniform flow at UQDB: 12 inches
- Test: 3 flowrates
- Record pressure delta values

Test Matrix

<table>
<thead>
<tr>
<th>Socket</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>x</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>B</td>
<td>✔</td>
<td>x</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>C</td>
<td>✔</td>
<td>✔</td>
<td>x</td>
<td>✔</td>
</tr>
<tr>
<td>D</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>x</td>
</tr>
</tbody>
</table>

4 Suppliers, run 4 iterations

Test fixture to test in varying mating conditions

- Nominal vs minimum engagement
- Radially aligned vs full 1mm of radial misalignment
- Flow direction through UQDB pair (Socket to Plug vs Plug to Socket)
Baseline – Calibration

- Establish baseline pressure drop without UQDB
Post-Processing Example

Sample Pressure Drop
Pressure drop through UQDs – Subtract baseline pressure drop

Solve for Cv
Linear fit using
\[Q = C_v \sqrt{\Delta P} \]
Low Cv relates to a high resistance

As Cv decreases in single blade, flow decreases. Total flow distributed through rack, potentially negative impact on single-blade cooling.

UQDB Impact Solver

Vary flow rate through each blade so that pressure drop is equal. Sum of blade flowrates equal to system flowrate.

Previous Results: pressure drop through servers/racks outweighs affect of varying pressure drop through UQDBs.

Takeaway: Little to no risk in using UQDBs from various suppliers
Call to Action

Review the UQD hand-mate and UQDB specifications and UQDB whitepaper for more information
 • https://www.opencompute.org/contributions

Get involved in the ACS Coldplate sub-project group
 • Monthly meetings 11-12 AM ET
 • https://www.opencompute.org/projects/acs-cold-plate
Thank you!