OPEN POSSIBILITIES.

ORV3 BBU Module Reference Design (Rev 0.5)

R&P (Rack & Power)

ORV3 Battery Back-up Unit Reference Design (Rev 0.5)

Gary Sapia - Director of Datacenter Power - Analog Devices - gary.sapia@analog.com

<u>Design Development Team</u>

Christian Cruz – Senior Product Applications Engineer – Analog Devices

Juan Brizo – Test Engineering Manager – Analog Devices

Vermont Sanchez – Equipment Development Engineer – Analog Devices

Regina Gavino – Senior PCB Layout Engineer – Analog Devices

Fengrui Zuo - Systems Applications Engineer - Analog Devices

Agenda

- Electrical Hardware Design
 - System Level Design Diagram
 - BBU Module Hardware level Design Diagram
- Simplified Functional State Machine Diagrams
 - BBU MCU
 - BMS MCU
 - Shelf MCU
- Electrical Lab Test Results
 - Efficiency, Buck to Boost Transition, Active Voltage Droop, Active Current Share
- Mechanical Design & Airflow Considerations
 - Detailed Mechanical Design Diagrams

System Level: Shelf/BBU Module and Test Hardware **Battery Backup Module RACK & POWER** PWR/GND **Battery Back-up Shelf Analog I Share Bus** ModBus System Comms BBU Charge/Discharge/DC-DC Electronics BBU Charge/Discharge/DC-DC Electronics BBU Compliance Safety (as applicable) Charge/Discharge/DC-DC • UL or an equivalent NRTL for the US with follow-up service (e.g. UL or CSA). • CB Certificate and test report issued by CSA, UL, VDE, TUV or DEMKO Electronics CE Marking for EU • UL1973 (Recog) cRUus BBU • IEC62133 Charge/Discharge/DC-DC • 62368-1 (UL/IEC) • UN38.3 Electronics Backplane Test Board + MODBUS Communications Module BBU Charge/Discharge/DC-DC Electronics BBU Charge/Discharge/DC-DC **ၜ**ီၜ ၜ**ီ**ၜ Electronics SMC (Shelf Management Controller)

NOVEMBER 9-10, 2021

BBU Module Hardware Diagram

OCP ORV3 - BBU Spec(0.5) – Firmware System Overview Simplified Function Diagram – **BBU MCU**

NOVEMBER 9-10, 2021

OCP ORV3 - BBU Spec (0.5) – Firmware System Overview Simplified Function Diagram - **BMS MCU**

OCP ORV3 - BBU Spec(0.5) – Firmware System Overview Simplified Function Diagram – **Shelf** MCU

Centralized System Monitoring and Control GUI

Lab Test Results

Boost Mode Conversion Efficiency

Buck to Boost mode transition, single phase conversion

LT8228 Single Phase Switchover Buck to Boost with 16A constant current Load

LT8228 unmodified demo board (Single Phase)

Active Voltage Droop

Ideal Voltage Droop under Load

 Single BBU: 	
BBU Current	Remote Sense Voltage

0 A -> 48 V 6.25 A -> 47.75 V 12.5 A -> 47.5 V 19.375 A -> 47.25 V

Dual BBU:

<u>Total</u>	Current	<u>R</u>	emote	e Sense	e Voltage
0	Α	->	48	V	
	_				

6.25 A -> 47.875 V 12.5 A -> 47.75 V 19.375 A -> 47.625 V

Active Current Share between 2 BBU Modules

Analog I-Share Performance

Spec: ±3% > 90% load, ±5% > 50% load, ±5% < 25% load

Mechanical Design Summary

OCP BBU ORV3 - rev 0.5

BBU module - compliant with specification 78.1mm x 87.6mm x 674mm (W x H x L).

Key features:

Main Power Board

- Manages BBU Power Conversion and Delivery
- 5-Ph/3kW Boost Power Conversion
- 1-Ph/0-5A Buck CC/CV Power Conversion
- Backplane Hot-swap/Disconnect/Protection
- Auxiliary Power System Conversion

MCU Board

- · Manages system level operations (Diagnostics/Faults)
- Housekeeping & timing
- Fault logging + Firmware Backup and EEPROM COMs
- System communications and addressing
- Battery charging algorithm

Battery Management System (BMS) Board

- Performs battery pack system SoH & SoC monitoring
- Manages Battery Cell Diagnostics and Telemetry
- Provides system data to the mainboard controller
- Passive cell balancing
- Fan controller

LED Board

User interface diffused LED indicators

Mechanical Design Details

Battery Pack Assembly

- Carries and aligns 72 x 18650 type Li-ion cells
- 3mm cell to cell spacing for optimal airflow cooling
- Rigid pack construction
- Secure Battery Pack to Chassis mounting system
- Modular sub-assembly design (easy replacement)
- High current(>100A) welded nickel strip/PCB construction
- Compliant with safety requirements
- On board BMS/MCU electronics
- Multi-layer Battery Disconnect Protection

Battery Back-up Module

- Meets ORV3-BBU Electrical & Mech. Specifications(0.5)
- Design for manufacturability
- Flexible design for high customizability
- Design for safe transportation & installation
- Accessible programming ports
- Easy Modular disassembly & maintenance
- Low complexity design for easy component sourcing

Mechanical Design Details

Thermal & Airflow:

- Permeable cell spacing to ensure maximum thru pack airflow
- Strategic heatsink placement for protection MOSFET cooling
- Welded wide nickel strip conduction paths for reduced IR losses
- High speed fan with programmable PID/Linear PWM control
- PCB 2oz copper trace design for high current/low loss conduction(>100A)
- Strategic temperature sensor placements for effective systems diagnostics and component OT protection

Thank you!

Open Discussion

Call to Action

- Contact us at:
 - Gary.Sapia@analog.com
- Demonstration Availability: Currently in prototype building phase
- Link to Contribution: Coming soon
- Where to find additional information: <u>Gary.Sapia@analog.com</u>

EE - OCP - BBU ORV3 Spec - Detailed Battery Management System Design

OCP

NOVEMBER 9-10, 2021

OCP - BBU ORV3 Spec - Charge/Discharge Power System Design

