OPEN POSSIBILITIES.

Challenges and Effects of EDSFF-based NVMe-oF Storage Solution

Challenges and Opportunities of EDSFF based Storage Solution

Jungsoo Kim, System Architect, Samsung Electronics Duckho Bae, Software Architect, Samsung Electronics

Agenda

- FDSFF Benefits
- Poseidon V1 E1.S Reference System
- Poseidon V2 E3.X Reference System
- Poseidon Storage OS NVMe-oF Solution

EDSFF - Benefits

- Designed to overcome conventional device limitations
- Improves thermals, power, and scalability
- Various power options 25W, 40W, 70W
- Various PCle lane options x2, x4, x8, x16
- Advantageous for high-speed interface (< PCIe Gen5)
- Built in LEDs, carrier-less design

Source: https://www.snia.org/forums/cmsi/knowledge/formfactors

EDSFF Reference System

- E1 and E3 based system can increase the performance and density
- Have more flexibilities than a traditional system

VS.

U.2 SSD x 10ea

VS.

E3.S SSD x 40ea

Poseidon Project

- Open-source HW & SW project to expand NVMe eco-system

E1.S Reference System – PSD V1

Motherboard

Backplane

: PSU 2ea : IO Module 1ea : FAN : MB 1ea : FHHL Card 2ea : OCP NIC V3 1ea

32ea

: E1.S SSD (5.9/8.01/9.5)

: NVDIMM Power Module

: 32 E1.S BP

Front View

10 Performance - Single vs Aggregated

STORAGE

- Each 32 SSDs shows stable IO performance around 6.4GB/s
- Aggregated IO performance achieved > 102GB/s
- Lanes b/w CPU↔PCle Switch (x16) are saturated with 4 SSDs

*Theoretical B/W limit: 128GB/s

· Samsung PM9A3 Specification

Form factor	E1.S
Capacity	960 GB, 1.92 TB, 3.82 TB, 7.68 TB
Sequential read	Up to 6,500 MB/s
Sequential write	Up to 3,200 MB/s
Random read	Up to 900,000 IOPS
Random write	Up to 150,000 IOPS
Physical Dimensions	31.5 x 111.49 x 5.9 mm
Powerconsumption	Read: <= 9.7W, Write: <= 11.7W
Host interface	PCIe Gen 4 x4

10 Performance - Raid 0&5

- Compared Raid 0 & 5 performance of 4 x NVMe SSDs
- Observed significant performance degradation on Raid 5 write operation
- Further R&D would be need for S/W Raid on high density system

OS: Ubuntu 20.04.2 LTS Kernel: Linux 5.4.0-65-generic Num. of threads: 112 (56 * 2)

Model name : Intel Xeon Gold 6330N CPU @ 2.20GHz

fio: fio-3.16

E1.S Tool-less Design

- STORAGE
- DC customers want to improve serviceability in their datacenter by removing the screws
- E1.S + extension kit with screws are the only option in the market, and we
 developed the innovate new tool-less ext. kit design to satisfy the
 requirements

Current Design Tool-less Design - Screw type - Clip type

ONDERFUE TO SERVICE TO

Screw Type (40sec)

Compatible w/ a screw type extension kit!

E3 Reference System - PSD V2

STORAGE

- Designed to maximize the benefits of E3.x form factor
- Can configure the system according to application's needs

[High Density Storage]

Type1: 24x E3.S 1T (PCle x4)

[Memory Cache / Cloud] CXL DRAM SSD CXL DRAM

Type2: 8x E3.S 1T + 8x E3.S 2T (PCle x8)

[Al / Video Transcoding] SmartSSD SSD Accelerator

[E3.S Gen5 SSD]

[CXL Memory Expander]

[Smart SSD]

*Above E3 SmartSSD picture is for illustration purpose only

Poseidon V2 - PCIe/CXL Topology

PCIe & CXL topology varies depending on the system mode

PoseidonOS

Open-Source NVMe-oF Solution for Disaggregated Datacenter Storage

- Solution
- Develop NVMe Technology and Eco-system
- Improve Datacenter Storage Efficiency and Performance

PoseidonOS Features

- User-space storage OS for NVMe-oF
- Provide PCIe Gen4 < performance via network
 - Up to 200GbE
- Support valuable storage features
 - NUMA-Aware, Volume Mgmt, Perf Throttling, SW RAID, ...
- Easily integrate with upper orchestration layers
 - RESTful, CSI, ···

Performance Numbers

STORAGE

- Achieved up to 200GbE Performance via NVMe/TCP
- Random Write has room for improvement

Poseidon in Datacenter

Storage Pool

GLOBAL SUMMIT NOVEMBER 9-10, 2021

Trident: Test Tool for Poseidon OS

- Helps open source users quickly setup and explore all features of Poseidon OS (POS)
- Planned to be open sourced to compliment the user documentation provided with POS
- Enables community users to quickly validate their lab setup
- Along with POS, can also be deployed on Qemu/KVM VMs and emulated NVMe devices
- Includes Test cases that are light-weight and intuitive as they exploit features of pytest framework like fixtures and parametrization.

Test Framework and Lab

Future Work

- Poseidon V2 contribution in 2022
- Tool-less design upgrade and datacenter adoption
- Support innovative devices (ex. ZNS, QLC)
- Support more features/provide developers toolkits
- Enable PCle Gen5 performance
- Available at Github

https://github.com/poseidonos/poseidonos

Call to Action

- Timeline for Contribution Availability
 - PM9A3 OCP SSD (`21 Q1) OCP Inspired
 - Poseidon V1 (`21 Q3) OCP Inspired
 - Tool-less SSD Design ('21 Q3) OCP Inspired
 - Poseidon V2 (Target in `22 Q3)
- Timeline for Product/Facility Availability
- Link to Contribution DB/OCP Marketplace
- Samsung PM9A3 SSD complies with the Open Compute Project (OCP) NVMe Cloud SSD (https://www.samsung.com/semiconductor/ssd/pm9a3/)
- Poseidon OS github: https://github.com/poseidonos/poseidonos/

Thank you!

