Time Sync in DC
What’s Next?

Dotan D. Levi
NVIDIA
Outline

• The 10,000 feet Overview:
 - What has changed since TAP established?

• The Next 3 challenges:
 - Extending and Improving the Service
 - Reliable Clock
 - Better Accuracy
 - More Time Sync use cases
 - Component Vendors- can telco product fit in Data center?

 - Call for Action: OCP is all about collaboration, how can you contribute help, make an impact?
What TAP have Accomplished

• Scale up the PTP service
 − Meta posses the largest known PTP deployment
 − Single GM sync millions of nodes (existing technology was 1000s)
 − All Transparent clock, no BCs
 • All measurable, less noise

• Operational
 − Tear up and down using DC tools
 − Monitoring (need more work there)

• Recognition
 − SW stack leveraging time sync – saving $$$
The Next big 3 things

1. Extend the service- we need a Reliable clock
 - Why? / how ?

2. Leverage more applications
 - Huge money saving, in many domains and discipline. This is the next X-factor
 - Which apps? What Factors?

3. Transferring clocking Vendors into DC market
 - Its not trivial to use devices that were set to a different market
 - What is missing? And why?
Reliable Clock – Why do we need it?

• When distributed APP is exploiting the time service, it rely on the correctness of the timestamp
• A bad timestamp could lead to a silent data corruption
• Concept was well presented in this paper:
 • “Sundial: Fault-tolerant Clock Synchronization for Datacenters” Yuliang Li et al
 - https://www.usenix.org/conference/osdi20/presentation/li-yuliang

Problem statement is clear and accepted but proposed solution doesn’t fit DC scale.
Reliable Clock – How?

• First Thing we did is to establish TAP workstream on Clock interface
 - Extending the clock API to include parameters, that will allow SW to calculate the error bound, (dynamically) and the confidence level of the time
 - Please Join!

• We also wish to Explore a more reliable service
 - Use big data
 - Use physical layer assistance
 - Extending PTP
 - Might create a workstream on this next year
Time Sync Use-Cases

Globally Sync Database
Avoid using commit wait, reduce mutex stalls X3 acceleration

TAAS
For any cloud Application E-Commerce, FSI, etc...

Cluster Debug
Sync all trace and event on a single coherent time axis
Time Sync Use-Cases

5G / EDGE
Enabling 5G edge softwarization, enabling 100mhz cell from a SW system

HPC
Accelerate HPC collective Offloads by Time-load-balance the inner networking

Enterprise Service
Broadcasting, M&E, Healthcare, Metaverse/Omniverse

Time Sync use Cases

Call for Action:
Application Architects: engage with our expert to explore your options to accelerate
Vendor’s wake up call

- Time sync offers an opportunity for clocking vendor to penetrate the datacenter market, as advance clocking solution is needed

- DC is a different market that the traditional market, and require some more capabilities
What is Needed? (2 examples)

• Pinout computability
 - From supply chain issues, each component must have an alternate solution
 - Innovation and quality will not be able to justify vendor locking
 - We will strive to define a packaging standard for DC clocking solution

• Fail safe Programming
 - Programable device must guarantee that the programming flow is fail safe
 - DC operations run fleet commands on 1,000,000 of nodes at once....
Summary – Call for Action

• Join TAP!
 − Contribute, make an impact, we need your Brain and POV
 − Existing workstreams needs more support
• Application architect : explore leveraging your APP using time sync
 − We will publish a “cook-book” soon
• Component Vendors: reach out to find how to add robustness for your components.
• Help us establish the Clocking device workstream to align pinout and architecture
Thank You