
Hardware Testing at Hyperscale

Hardware Testing at Hyperscale

Dan Frame, SWE Manager, Google
Paul Ng, QA Lead, Facebook
Vincent Matossian, SWE Manager, Facebook
Yuanlin Wen, SWE, Google
Charles Garvin, SWE, Google

TEST AND
VALIDATION

Presenters

Paul Ng
QA Lead, Facebook

Vincent Matossian
Software Engineering

Manager,
Facebook

Dan Frame
Software Engineering

Manager,
Google

TEST AND
VALIDATION

The Early Days of DC Hardware Testing
Before the days of Hyperscale:

• Server Counts were an insignificant fraction of what they are
today.

• All machines were basically homogenous
○ It was a CPU centric world, and CPU was generally x86-64

based.
• SKU proliferation was low, and almost everything was

“designed in house” for the Hyperscalers specific needs.
• Most of our testing and validation was done at one integration

facility with a common set of infrastructure.

TEST AND
VALIDATION

Enter the Hyperscale Era
● Machine counts have well exceeded linear growth.
● The proliferation of different machine types has continued to grow
● Several different instruction sets to target (x64, AArch64, RISC-V, etc)
● No longer only CPU-centric, there are many types of off-loads and

accelerators that need testing.
● Increasingly, DC designs are becoming partnerships across many

different organizations with different environments
● Tests and Diagnostics are no longer developed 100% internally. We

use a variety of different diagnostics both internal and externally
developed. Many tests and repair processes are proprietary with
documented interfaces.

● The New Product Introduction (NPI) cycle has shortened, and
elimination of duplicate work for testing/validation has become
essential to be competitive.

TEST AND
VALIDATION

Hardware Diagnostics - Low Volume/Early Life Cycle

Hardware Bringup
System Integration

Testing
Reliability Testing

Why?

What?

Where?

How?

Who?

First Boot, initial
debug/design verification

Power Sequencing, Boot Up,
Bus Training

Hardware/Software Engineers

Design Partners and Hyperscalers
Lab Bench, Simulators

Manual Execution
No/Light Automation
Ad Hoc Execution

Verify Hardware and Software
quality/compatibility during
development

Hardware
diagnostic/performance/stress/load
testing for software development
life-cycle.

Software Engineers

Design Partners and Hyperscalers
Dedicated CI Environment

Usually integrated into Continuous
Integration/Continuous Release
Environment and toolchain.

Estimate Hardware Longevity
Estimates and Reliability (MTBF,
MTDL, etc), Thermal Limits and
Design Issues

Stress Testing, Voltage/Frequency
Margining
Environmental and Thermal Testing

Labs, Environmental Chambers,
Shock and Vibe, etc

Hardware and Quality/Reliability
Engineers

Long Tests
Highly Automated

TEST AND
VALIDATION

Hardware Diagnostics - Volume Applications

Manufacturing Data Center Operations RMA/Reverse Logistics

Why?

What?

Where?

How?

Who?

Verify Components,
Provisioning and Assembly
Processes

Test All Components,
Interconnects, and Assemblies

Manufacturing Engineers

Contract/Original Design
Manufacturers

Highly Automated
Test Executives with tight
shop floor control integration
Indict to Component/BUS
Level

Verify Components, Provisioning and
Assembly Processes

Test All Components, Interconnects,
and Assemblies

Data Center Operations

Data Centers, Colo Facilities

High Automated Test Executives
High Security Requirements
Tight integration with Work Flow
Management Systems
Indict to FRU Level

Verify Components, Provisioning and
Assembly Processes

Test Components

Contract/Original Design
Manufacturers

Hardware/Vendor Engineering

Various Levels of Automation
Indict to Component or FRU Level

TEST AND
VALIDATION

Multiple Use-Cases, Multiple Requirements
Hardware Bringup

System Integration Testing

Reliability Testing

Manufacturing

Data Center Operations

RMA/Reverse Logistics

Ongoing Reliability Testing

● Different Execution Environments
○ Many Different Test Executives and Sequencers used for different testing

scenarios
○ Different Security Requirements
○ Different Operating Systems
○ Different Data Schemas

● Different Test Use Cases
○ Long-Running vs. Short Running Tests
○ Component level vs. FRU level Root-Cause
○ FRU Level vs. System Level vs. Rack Level vs. Multi-Rack Testing

● Different Users, Engineers, and Stakeholders
○ Differing Skill-sets
○ Differing Preferred Toolsets

■ Development Languages
■ Continuous Integration Environments
■ Data Collection/Analysis Needs

What are the new challenges we need
to solve?

- Acceleration/re-use of diagnostic development and integration efforts at all
stages of the product life-cycle.

- Diagnostic portability across multiple products, environments, and
use-cases.

- Reproduction of test and validation issues across multiple hardware and
software partners.

- Simple sharing of component vendor tests to accelerate RMA and root-cause
analysis.

TEST AND
VALIDATION

Hardware Testing Applications

POC

EVT
x

DVT
x

PVT

GA

~10 Units ~100 Units ~ 100 - 1K Units >1000 Units
Mass

Production

Testing requirements continue to
change at each stage as volumes
continue to increase in the product
development life-cycle…

As the DUT counts increase, so does
pressure for test time optimization
and high fault isolation to aid repair
cycles.

How We Got Here
TEST AND

VALIDATIONBefore the proposed OCP Diagnostic standard, our diagnostics were very tightly
integrated with our test framework, and it made portability very difficult. In order to
run our diagnostics, it meant exporting a great deal of our internal Infrastructure.

Test
Executive

Diagnostics
 “As a Service”

Daemon

Lots of
RPC calls,

and
messages

Job Handlers

Tasks (a.k.a.
diagnostics)

Web-Services

This is the only thing people
really needed, but they needed
all this other stuff to use these…

How Test Execution Could Be
Structured

Diag Device
OCP Test

and
Validation

Framework

Validation Labs/
Design Partners

Manufacturing Test

Data Center Operations

TEST AND
VALIDATION

Reverse Logistics

Result Data

OCP Diagnostic and Validation Framework

This framework provides multi-language support for the following
features…

- Proven Data Model for Diagnostic Output
- API’s to easily produce that output.
- Streaming Results For Long Running Tests
- Simple, Powerful Parameter Management
- An optional Device Communication Library
- An optional Hardware Abstraction Layer

TEST AND
VALIDATION

How does it fit in different environments?

● Provides sequencing for tests.
● Typically integrates with PLM and control

systems.
● Records test results to some persistent store

(database, etc)
● Provides arguments to a diagnostic
● May control the lifecycle of a diagnostic.
● May be responsible for installing a

diagnostic payload onto a machine under
test.

● Typically has final determination of pass/fail
or at least the ability to override that.

● May transform OCP diagnostic output to an
internal/alternative representation.

● Parses input arguments
● Performs actual testing either on or off the device

under test.
● Provides a consistent output format.
● Provides pass/fail result which can be overridden

by a test executive.

Test Environment/Executive OCP Diagnostic
TEST AND

VALIDATION

The OCP Diagnostic framework is NOT a test
executive.

A test executive typically has dozens of integration
points in an organization (i.e. ERP, MES, Data
Collection, etc).

By contrast, the diagnostic or test typically only has
two integration points, so portability is best achieved at
interacting at this level.

OCP Diagnostics - Result Model
Test Run

Test Step[s]

Diagnosis

Measurement[s]

Log[s]

Hardware Info

Software Info

Parameters

Limits & Thresholds

Hardware Info

Hardware Info

Error[s] Software Info

File[s]

MeasurementSeries Limits & Thresholds

Hardware Info

ArtifactExtension[s]

TEST AND
VALIDATION

OCP Diagnostics - Result Model Example

Memory Latency
Test

MLC Intra Node Bandwidth
Test

inter_node_bandwidth_min

inter_node_bandwidth_min

CPU-0

CPU-1

good-inter-node-bandwidth CPU-0 CPU-1

intra_node_bandwidth_min

intra_node_bandwidth_min CPU-1

CPU-0

good-intra-node-bandwidth CPU-0 CPU-1

params

dut_info

MLC Inter-Node Bandwidth
Test

Test Run

Test Step(s)

Measurement(s)

Diagnosis

HardwareInfo(s)

TEST AND
VALIDATION

OCP Diagnostics - Result API’s - Test Runs
// Intended use is to have one TestRun object per OcpDiag Test.
class TestRun : public internal::LoggerInterface {
 public:
 ~TestRun() override { End(); }

 // Returns a TestRun object if successful. This is meant to be called only
 // once per test, and will fail if called a second time. `name`: a descriptive
 // name for your test.
 static absl::StatusOr<TestRun> Init(std::string name);

 // Emits a TestRunStart artifact and registers the DutInfos.
 // No additional DutInfos can be registered after this point.
 virtual void StartAndRegisterInfos(
 absl::Span<const DutInfo> dutinfos,
 const proto2::Message& params = google::protobuf::Empty());

 // Emits a TestRunEnd artifact and returns overall result.
 virtual third_party::OcpDiag::results_pb::TestResult End();

 // Skips and ends the Test.
 // Should be part of, or followed by a return statement.
 virtual third_party::OcpDiag::results_pb::TestResult Skip();

 // Emits an Error artifact, associated with the TestRun.
 // This is intended for scenarios where a software error occurs
 // before the test officially starts (i.e. the TestRun::StartAndRegisterInfos
 // method has not yet been called. For example, when gathering host
 // information with the hardware interface).
 // Once the test has started, prefer to use TestStep::AddError(...).
 virtual void AddError(absl::string_view symptom, absl::string_view message);

 // Emits a Tag artifact, associated with the TestRun
 virtual void AddTag(absl::string_view tag);

 // Returns the current overall TestRun status
 virtual third_party::OcpDiag::results_pb::TestStatus Status() const;

 // Returns the current overall TestRun result
 virtual third_party::OcpDiag::results_pb::TestResult Result() const;

 // If true, it is ok to start creating TestSteps.
 virtual bool Started() const;

 // Returns true if the TestRun has ended (i.e. any of End(), Skip(), or
 // fatal error have been called)
 virtual bool Ended() const;

 // Emits a Log artifact of Debug severity, associated with the TestRun.
 void Debug(absl::string_view msg) override;
 // Emits a Log artifact of Info severity, associated with the TestRun.
 void Info(absl::string_view msg) override;
 // Emits a Log artifact of Warn severity, associated with the TestRun.
 void Warn(absl::string_view msg) override;
 // Emits a Log artifact of Error severity, associated with the TestRun.
 void Error(absl::string_view msg) override;
 // Emits a Log artifact of Fatal severity, associated with the TestRun.
 // Note: this may have downstream effects, such as terminating the program.
 void Fatal(absl::string_view msg) override;

TEST AND
VALIDATION

OCP Diagnostics - Result API’s - Test Steps
// TestStep is a logical subdivision of a TestRun.
class TestStep : public internal::LoggerInterface {
 public:
 ~TestStep() override { End(); }

 // Factory to create a TestStep. Emits a TestStepStart artifact if successful.
 static absl::StatusOr<TestStep> Begin(TestRun*, std::string name);

 // Emits a Diagnosis artifact. A FAIL type also sets TestRun result to FAIL,
 // unless an Error artifact has been emitted before this.
 virtual void AddDiagnosis(third_party::OcpDiag::results_pb::Diagnosis::Type,
 std::string symptom, std::string message,
 absl::Span<const HwRecord>);

 // Emits an Error artifact associated with this TestStep.
 // Also Sets TestRun status to ERROR.
 virtual void AddError(absl::string_view symptom, absl::string_view message,
 absl::Span<const SwRecord>);

 // Emits a standalone Measurement artifact.
 // Acceptable Value kinds if using ValidValues limit: NullValue, number,
 // string, bool, ListValue.
 // Acceptable Value kinds if using Range limit: number, string.
 virtual void AddMeasurement(
 third_party::OcpDiag::results_pb::MeasurementInfo,
 third_party::OcpDiag::results_pb::MeasurementElement,
 const HwRecord* hwrec);

 // Emits a File artifact
 virtual void AddFile(third_party::OcpDiag::results_pb::File);

 // Emits an ArtifactExtension artifact
 virtual void AddArtifactExtension(std::string name,
 const proto2::Message& extension);

 // Emits a Log artifact of Debug severity, associated with the TestStep.
 void Debug(absl::string_view msg) override;
 // Emits a Log artifact of Info severity, associated with the TestStep.
 void Info(absl::string_view msg) override;
 // Emits a Log artifact of Warn severity, associated with the TestStep.
 void Warn(absl::string_view msg) override;
 // Emits a Log artifact of Error severity, associated with the TestStep.
 void Error(absl::string_view msg) override;
 // Emits a Log artifact of Fatal severity, associated with the TestStep.
 // Note: this may have downstream effects, such as terminating the program.
 void Fatal(absl::string_view msg) override;

 // Emits a TestStepEnd artifact
 virtual void End();

 // Skips and ends the step.
 virtual void Skip();

 // Returns true if End() or Skip() have been called
 bool Ended() const;

 // Returns current TestStep status
 third_party::OcpDiag::results_pb::TestStatus Status() const;
 };

TEST AND
VALIDATION

OCP Diagnostics - Result API’s - MeasurementSeries
// A collection of related measurement elements.
class MeasurementSeries {
 public:
 virtual ~MeasurementSeries() { End(); }

 // Factory method to create a MeasurementSeries. Emits a
 // MeasurementSeriesStart artifact if successful.
 static absl::StatusOr<MeasurementSeries> Begin(
 TestStep*, const HwRecord&,
 third_party::OcpDiag::results_pb::MeasurementInfo);

 // Emits a MeasurementElement artifact with valid range limit.
 // Acceptable Value kinds: string, number
 virtual void AddElementWithRange(
 google::protobuf::Value,
 third_party::OcpDiag::results_pb::MeasurementElement::Range);

 // Emits a MeasurementElement artifact with valid values limit.
 // Acceptable Value kinds: NullValue, number, string, bool, ListValue.
 virtual void AddElementWithValues(
 google::protobuf::Value,
 absl::Span<const google::protobuf::Value> valid_values);

 // Emits a MeasurementElement artifact without a limit.
 // Acceptable Value kinds: NullValue, number, string, bool, ListValue.
 virtual void AddElement(google::protobuf::Value value);

 // Emits a MeasurementSeriesEnd artifact unless already ended.
 virtual void End();

 // Returns true if End() has already been called
 virtual bool Ended() const;
};

TEST AND
VALIDATION

Diagnostic Output - JSON
The OCP Diagnostic Framework by default returns results as executed as streaming JSON output.

Why JSON?
- Highly Portable, Self-Describing - No Metadata needed.
- Human readable and machine readable.
- Many visualization/validation tools available
- Widely known/expertise across all diagnostic functions.
- JSONL provides a format for streaming large amounts of JSON for long-running tests that require periodic

updates.

Limitations of JSON
- Not Performant/High Level of Transmission Redundancy/Computationally expensive to parse
- Requires an intermediate schema for streaming long-running tests with real-time updates. Some of our

use-cases for testing have very long durations (i.e. weeks)

We have selected portability over efficiency for the simplified integration, but internally all data is represented by a
strongly typed, efficient protocol buffer implementation.

TEST AND
VALIDATION

Diagnostic Output - JSON
{"testRunArtifact":{"testRunStart":{"name":"mlc","version":"399834856","parameters":{"@type":"type.googleapis.com/meltan.mlc.Param
s","interNodeBandwidthMin":0,"intraNodeBandwidthMin":0,"interNodeLatencyMax":0,"intraNodeLatencyMax":0,"useDefaultThresholds":true
,"dataCollectionMode":false},"dutInfo":[{"hostname":"dut","hardwareComponents":[{"hardwareInfoId":"0","arena":"","name":"cpu0","fr
uLocation":{"devpath":"/phys/CPU0","odataId":"","blockpath":"","serialNumber":"cpu0_serial"},"partNumber":"cpu0_part","manufacture
r":"MFG","mfgPartNumber":"","partType":"cpu"},{"hardwareInfoId":"1","arena":"","name":"cpu1","fruLocation":{"devpath":"/phys/CPU1"
,"odataId":"","blockpath":"","serialNumber":"cpu1_serial"},"partNumber":"cpu1_part","manufacturer":"MFG","mfgPartNumber":"","partT
ype":"cpu"}],"softwareInfos":[{"softwareInfoId":"1","arena":"","name":"system_daemon","version":"20210902.0-external-nightly-0"}]}
]}},"sequenceNumber":0,"timestamp":"2021-09-30T03:09:44.678957932Z"}
{"testStepArtifact":{"testStepStart":{"name":"Measure Internode
Bandwidth"},"testStepId":"1"},"sequenceNumber":1,"timestamp":"2021-09-30T03:12:40.667365379Z"}
{"testStepArtifact":{"measurement":{"info":{"name":"inter_node_bandwidth_min","unit":"MB/sec","hardwareInfoId":"0"},"element":{"in
dex":0,"measurementSeriesId":"NOT_APPLICABLE","range":{"minimum":49500,"maximum":"Infinity"},"value":115649.4}},"testStepId":"1"},
"sequenceNumber":2,"timestamp":"2021-09-30T03:12:40.667907305Z"}
{"testStepArtifact":{"measurement":{"info":{"name":"inter_node_bandwidth_min","unit":"MB/sec","hardwareInfoId":"1"},"element":{"in
dex":0,"measurementSeriesId":"NOT_APPLICABLE","range":{"minimum":49500,"maximum":"Infinity"},"value":115704.2}},"testStepId":"1"},
"sequenceNumber":3,"timestamp":"2021-09-30T03:12:40.668283952Z"}
{"testStepArtifact":{"diagnosis":{"symptom":"good-inter-node-bandwidth","type":"PASS","msg":"Measured value 115649.4 \u003e=
minimum bandwidth threshold
49500","hardwareInfoId":["0","1"]},"testStepId":"1"},"sequenceNumber":4,"timestamp":"2021-09-30T03:12:40.668557351Z"}
{"testStepArtifact":{"testStepEnd":{"name":"Measure Internode
Bandwidth","status":"COMPLETE"},"testStepId":"1"},"sequenceNumber":5,"timestamp":"2021-09-30T03:12:40.668732179Z"}
{"testStepArtifact":{"testStepStart":{"name":"Measure Intranode
Bandwidth"},"testStepId":"2"},"sequenceNumber":6,"timestamp":"2021-09-30T03:12:40.668890997Z"}
{"testStepArtifact":{"measurement":{"info":{"name":"intra_node_bandwidth_min","unit":"MB/sec","hardwareInfoId":"0"},"element":{"in
dex":0,"measurementSeriesId":"NOT_APPLICABLE","range":{"minimum":139500,"maximum":"Infinity"},"value":180296.1}},"testStepId":"2"}
,"sequenceNumber":7,"timestamp":"2021-09-30T03:12:40.669171538Z"}
{"testStepArtifact":{"measurement":{"info":{"name":"intra_node_bandwidth_min","unit":"MB/sec","hardwareInfoId":"1"},"element":{"in
dex":0,"measurementSeriesId":"NOT_APPLICABLE","range":{"minimum":139500,"maximum":"Infinity"},"value":180585.5}},"testStepId":"2"}
,"sequenceNumber":8,"timestamp":"2021-09-30T03:12:40.669462376Z"}
{"testStepArtifact":{"diagnosis":{"symptom":"good-intra-node-bandwidth","type":"PASS","msg":"Measured value 180296.1 \u003e=
minimum bandwidth threshold
139500","hardwareInfoId":["0","1"]},"testStepId":"2"},"sequenceNumber":9,"timestamp":"2021-09-30T03:12:40.669685368Z"}
{"testStepArtifact":{"testStepEnd":{"name":"Measure Intranode
Bandwidth","status":"COMPLETE"},"testStepId":"2"},"sequenceNumber":10,"timestamp":"2021-09-30T03:12:40.669851968Z"}
{"testRunArtifact":{"testRunEnd":{"name":"mlc","status":"COMPLETE","result":"FAIL"}},"sequenceNumber":11,"timestamp":"2021-09-30T0
3:12:40.672711573Z"}

Test Run Start

Test Step Start

Test Run End

Measurement

Test Step End

Diagnosis

Measurement

Test Step Start

Measurement

Test Step End

Diagnosis

Measurement

TEST AND
VALIDATION

OCP Diagnostic Parameter Model

Due to the requirements to re-use diagnostics in multiple use-cases and environments, the ability to parameterize
and configure the diagnostics at execution time rather than build time is essential.

In addition, some diagnostics have many different parameters, including complex-types and lists of values.

As a result, the ability to provide simple help to the consumers of the diagnostics, default parameters, and the ability
to override those default parameters necessitates a powerful parameter model that allows developers to focus on the
test challenge at hand, rather than the plumbing required to capture parameters and integrate with other test
environments.

Parameters to OCP diagnostics can be specified as CLI arguments, or supplied via StdIn depending on the best
approach for different users. This also provides the ability to leverage configuration files for very large parameter sets
that are infrequently changing.

TEST AND
VALIDATION

OCP Diagnostic Parameter Model

Parameter
Compile-time
Recipe

Definition

Defaults

Protobuf

JSON

Proto3->JSON canonical support

Parameter Runtime
Recipe

Command-line
flags

STDIN JSON
files

Generate

Runtime Parameters

OverrideDefault

TEST AND
VALIDATION

Parameter Definition & Defaults
// File: mlc/params.proto
syntax = "proto3";
package OcpDiag.mlc;

message Params {
 // Minimum inter-node bandwidth required.
 float inter_node_bandwidth_min = 1;
 // Minimum intra-node bandwidth required.
 float intra_node_bandwidth_min = 2;
 // Maximum inter-node latency allowed.
 float inter_node_latency_max = 3;
 // Maximum inter-node latency allowed.
 float intra_node_latency_max = 4;
 // Whether to use default thresholds.
 bool use_default_thresholds = 5;
 // If this is true, the test won't compare the
bandwidth or data with any thresholds.
 bool data_collection_mode = 7;
}

--help can be used to print parameter flags.

$./mlc --help
Usage: ./mlc [options]
 --inter_node_bandwidth_min Minimum inter-node bandwidth required.
 Type: float
 Default: 0
 --intra_node_bandwidth_min Minimum intra-node bandwidth required.
 Type: float
 Default: 0
 --inter_node_latency_max Maximum inter-node bandwidth allowed.
 Type: float
 Default: 0
 --inter_node_latency_max Maximum intra-node bandwidth allowed.
 Type: float
 Default: 0
 --use_default_thresholds Whether to use default thresholds
 Type: bool
 Default: true
 --data_collection_mode If this is true, the test won't compare the
bandwidth or data with any thresholds.
 Type: bool
 Default: false

File: mlc/params.json
{
 "use_default_thresholds" : true,
 "data_collection_mode" : false,
}

Name Description

Type

Default

"ocpdiag_test_pkg" Bazel Build Rule

mlc/BUILD

load("//third_party/OcpDiag/lib:OcpDiag.bzl",
"ocpdiag_test_pkg")

Parameter definition.
proto_library(
 name = "params_proto",
 srcs = ["params.proto"],
)

cc_proto_library(
 name = "params_cc_proto",
 deps = [":params_proto"],
)

Test binary.
cc_binary(
 name = "mlc_bin",
 srcs = ["mlc_main.cc"],
 deps = [
 ":params_cc_proto",
],
)

Test executable
ocpdiag_test_pkg(
 name = "mlc",
 binary = ":mlc_bin",
 json_defaults = "params.json",
 params_proto = ":params_proto",
)

TEST AND
VALIDATION

Parameter Overrides # Parameter override

$./mlc --dry_run
{
 "use_default_thresholds" : true,
 "data_collection_mode" : false,
}

$ cat param_override.json
{
 "use_default_thresholds" : false,
 "inter_node_bandwidth_min" : 100,
}

$./mlc --dry_run < param_override.json
{
 "inter_node_bandwidth_min" : 100,
 "use_default_thresholds" : false,
 "data_collection_mode" : false,
}

$./mlc --dry_run < param_override.json
--inter_node_bandwidth_min=200
{
 "inter_node_bandwidth_min" : 200,
 "use_default_thresholds" : false,
 "data_collection_mode" : false,
}

Defaults JSON

STDIN JSON File

Command-line flags

Overridden by

Overridden by

Note: "--dry_run" flag can be used to sanity
check parameter override combinations.

OCP Diagnostics - Communication Interface

Diagnostics are typically invoked and sequenced from a control computer that is separate from the device under
test. This control computer may be testing dozens, or even hundreds of DUT’s in parallel depending on the
environment. Different environments have different security needs. For instance, a manufacturing test
environment may have different policies for remote execution than a tightly controlled production environment in
a data center.

As such, the OCP Diagnostic framework includes an API to assist with common tasks that includes a simple
interface for extending it into new environments, with new requirements. By default, an SSH based
implementation is provided for users as part of the core framework.

TEST AND
VALIDATION

OCP Diagnostics - Communication Interface

Diagnostic ConnInterface

OpenSSH
Implementation

DC Proprietary
Implementation

TEST AND
VALIDATION

OCP Diagnostics - Communication Interface APIs
// Class ConnInterface provides a remote connection to the specified machine
// node. It provides the file read/write operations, and the capability to
// launch a remote command on the machine node.
class ConnInterface {
 public:
 // Options to configure a command.
 struct CommandOption {
 // The following arguments specify an absolute file path for redirecting
 // stdout/stderr. Whenever the stdout/stderr is redirected, the
 // corresponding field in "CommandResult" will be empty.
 std::string stdout_file;
 std::string stderr_file;
 };

 // The exit code and the command's output to stdout and stderr.
 struct CommandResult {
 // set to -127 by default.
 // exit_code = 0 means OK. follows the python-style exit codes.
 int exit_code = -127;
 std::string stdout;
 std::string stderr;
 };

 virtual ~ConnInterface() = default;

 // ReadFile reads a file from the machine node, and returns the full file
 // content on success, or the error status when applicable.
 virtual absl::StatusOr<absl::Cord> ReadFile(absl::string_view file_name) =
0;

 // WriteFile writes the given data to the file on the machine node and
returns
 // the status.
 virtual absl::Status WriteFile(absl::string_view file_name,
 absl::string_view data) = 0;

 // RunCommand runs a remote command on the machine node, and
returns the
 // command output on success, or the error status when applicable.
 // If the command's stdout/stderr is redirected by setting the
CommandOption
 // option, the corresponding field in "CommandResult" will be empty.
 virtual absl::StatusOr<CommandResult> RunCommand(
 absl::Duration timeout, const absl::Span<absl::string_view> args,
 const CommandOption& options) = 0;
};

OCP Diagnostics - Hardware Interface

In some scenarios, the way that a diagnostic interrogates DUT hardware may not be consistent in different environments.
This can be due to the execution environment of a diagnostic, or may be due to the need for a diagnostic to reference a
unique hardware identifier to interface with shop-floor control systems or workflow systems for operations.

As a result, we include an optional HW interface that provides a communication abstraction layer for a device under test.
In many cases, this may not be necessary and the diagnostic can communicate to the hardware directly, but in other
scenarios, the use of a shim can be beneficial.

TEST AND
VALIDATION

OCP Diagnostics - Hardware Interface

Hardware
Abstraction Layer

Host Backend

Custom BMC Backend

Open Redfish Backend

Custom Host Backend

Config
File

OCP Diag

 2. HW Interface Client

 3. Get<Resource>Info Request

 1. Config File & Flags

 4. Get<Resource>Info Response

 5. Repeat 3 and 4

OCP Diagnostics - Hardware Interface

CPU Test HW
Interface

GetCPUInfo

lscpu

cat /proc/cpuinfo

dmidecode --type processor

lshw -C CPU

system daemon->GetCPUInfo RPC

Different
Implementations

Allows a single diagnostic to
run in multiple OS’s or
different machine types
cleanly.

Allows us to use a different
interface between MFG and
Production if required.

Provides a transition path
to migrate from from
proprietary interfaces to
open OPC/DTMF standards
(i.e. RedFish)

HTTP get /redfish/v1/Systems/

OCP Diagnostics - Multiple Language Support

The OCP Diagnostic Framework supports diagnostic development with common API’s across these
languages which are popular in the test development space

- Python
- C++
- Golang (Coming Soon)

TEST AND
VALIDATION

OCP Test and Validation Repository
• JSON format example for implementation.
• Consists of tests that are OCP ready written by the community.
• Community driven tests that can be picked up and dropped into

any test executive supporting the OCP diagnostic and validation
framework format.

TEST AND
VALIDATION

Supported Platforms

Open Source:

- OpenTAP Test Automation Project
- OpenTest Manufacturing Test Platform
- ConTest Test Automation Framework

Proprietary:

- Google’s Burnin Data Center Test Platform
- Facebook’s FAVA Hardware Test Platform

Many more coming soon!

TEST AND
VALIDATION

ConTest

Reference our “lightning talk”,
or visit the OCP experience
center for more information.

FAVA by Facebook

Reference our “lightning talk”,
or visit the OCP experience
center for more information.

OpenTest

Reference our “lightning talk”,
or visit the OCP experience
center for more information.

OpenTAP

Reference our “lightning talk”,
or visit the OCP experience
center for more information.

Test Executive Support

The test platforms we just highlighted are executing the same diagnostics via different
communication methods, running on 3 different operating systems.

By implementing your diagnostic in the OCP framework, it’s capable of running at:

- Hardware Validation Labs
- Original Design and Contract Manufacturing Partners
- Data Center Testing Systems at Major Hyperscalers

All of this requires no additional integration work, or specialized wrappers for each
diagnostic.

If you add support for the OCP Diagnostic format to your test execution platform, you
open up executing all OCP diagnostics with a single development effort.

TEST AND
VALIDATION

Where to Get it?
The latest version of the OCP Diagnostic Framework and documentation is available publicly at:

git clone https://github.com/opencomputeproject/ocp-diag-core

TEST AND
VALIDATION

https://github.com/opencomputeproject/ocp-diag-core

What’s Next?
Over the coming months, we will be releasing many diagnostics based on this format focused on testing
non-differentiated core server hardware including:

- Memory
- CPUs
- Storage
- Common Communication Buses
- Machine Check Error Monitoring
- Networking Interfaces
- Environmental/Thermal Monitors
- Power/Performance/Benchmark Monitors

We also will be including common interfaces for industry test executive’s such as Keysight’s OpenTAP test executive
framework and other common open-source unit testing frameworks.

Thanks!

Special thanks to all the people who
have participated in the project so far!

• Raveej Sharma – OCP
• Yuanlin Wen - Google
• Dharmesh Jani – Facebook
• Daniel Alvarez Wise – Facebook
• Tobias Fleig – Facebook
• Adrian Enache – Facebook
• Giovanni Colapinto - Facebook
• Ron Minich – Google
• Ryan O’Leary – Google
• Kevin Byod – Google

• Brennen DiRenzo – Keysight
• Winston Liu - Keysight
• Jon Stroud - Keysight
• Alexander Wang – Keysight
• Christian Walters – 9Elements
• Jens Drehaus – 9Elements
• Jean-Marie Verdun – HPE
• Arun Koshy – HPE
• Gregg Shick – HPE
• Paula Kylas – HPE
• William Navas - HPE

TEST AND
VALIDATION

Call to Action
• If you are interested, and would like to participate, please join the Test and

Validation working group.
• We are looking feedback, diagnostic contributions, as well as re-usable interfaces

to common test executives used at ODM’s, Hyperscalers, and contract
manufacturers

• Check us out at the Experience Center!

Where to participate: https://github.com/opencomputeproject/ocp-diag-core

Wiki with latest specification: https://github.com/opencomputeproject/ocp-diag-core/wiki

Project Wiki : https://www.opencompute.org/wiki/OCP_Test_and_Validation_Enablement_Initiative

TEST AND
VALIDATION

https://github.com/opencomputeproject/ocp-diag-core
https://github.com/opencomputeproject/ocp-diag-core/wiki

Thank you!

