Designing Scale-out Chiplet Based Systems

PUNEET GUPTA ECE DEPT., UCLA PUNEETG@UCLA.EDU

A Brief History of Waferscale Computing

- Waferscale systems: processors that span a full silicon wafer
 - 100mm wafer ~ 7900mm2
 - 200mm wafer ~ 31,400mm2
 - 300mm wafer ~ 70,000mm2
 - Comparison: largest System on Chip ~ 800mm2
- •Waferscale processing has been discussed since 1980s
 - Never really worked out due to yield issues
 - Recent efforts more promising

Trilogy Systems

2

Tandem Computers, Fujitsu

Other efforts: ITT Corporation, Texas Instruments. Recent efforts: Spinnaker (Neuromorphic Chip), Cerebras, Tesla

HTTP://NANOCAD.EE.UCLA.EDU

Time to Give Waferscale Another Go?

- Highly parallel applications are spread across many processors
- Communication between the processors is still a big bottleneck
 - Low Bandwidth (a few 100s of GBps)
 - High energy per bit (10s of pJ/bit)
 - Real estate on chip (15-25% of the chip is devoted to SERDES I/Os)
- However, to achieve scale-out integration, we need to solve the **<u>yield problem</u>**

Re-imagining Waferscale Integration

Q: What do we need from waferscale integration?

A: High density interconnection

interconnect wafer

Enabling WSI Technology

Allows waferscale integration with high yield

*UCLA CHIPS Program: https://www.chips.ucla.edu/research/project/4

HTTP://NANOCAD.EE.UCLA.EDU

Designing a Waferscale Processor Prototype: Challenges and Solutions

[Appeared in DAC'21, ECTC'21]

2048 Chiplet Architecture

Challenges Faced While Designing the System

How should we **deliver power** to all the flip-chip bonded chiplets across the wafer?

How can we reliably **distribute clock** across such a large area?

What is the **testing strategy** for such a large system?

What is the **inter-chip network architecture** and how do we achieve resiliency if a few chiplets fail?

Power Delivery

- Edge Power Delivery at 2.5V
 - Wasteful but simple
 - Back or front side power delivery possible but more complex
- LDO based power management at each node

- On-chip decoupling capacitance (20nF per tile)
- DeCap consumes 30% of the chip area
 - Deep Trench Capacitors would help

Waferscale Clocking

- Clock generation
 - Stable reference voltage needed by PLL not present away from edge
 - Generate fast clock at the edge and distribute
- Clock distribution
 - Fast clock is forwarded
 - Clock inverted at each hop to avoid duty cycle distortion accumulation

- Communication between dies using asynchronous interfaces
- Fault tolerance in clock distribution network

- PLL

- Clock generating edge tile

Pre-bond Die Testing

- Fine pitch pads cannot be probed
- Larger sacrificial pads for probe test

Post-bonding JTAG Test Scheme

- (1) Multiple chains
 - One JTAG chain results in single point of failure vulnerability
 - Throughput is an issue:
 - 2.5 hours to load the memories using one chain
 - 5 minutes to load with 32 chains
- (2) Progressive unrolling
 - Helps identify post-bonding faulty dies
 - Similar to IEEE 1838 proposal

Network Resiliency

I/O Architecture

- I/O pitch of 10 um and depth of 20 um
- Simple cascaded buffer architecture
- 0.07 0.18 pJ/bit
- Two pillars per IO for redundancy
- ESD diodes and buffers need to fit within the I/O footprint

Chiplets Tested, Waferscale System Assembly in Progress

UCL⁵/Å

NanoC'AD

15

Summary

- Large scale chiplet-based processing is here to stay: chiplet advantages at the systemlevel
- 1. Heterogeneity.
 - Integrate logic non-compatible memories + network interfaces
 - Selective upgrades to system IPs
- 2. Scale
 - Ability to build large systems without yield concerns
 - Possibility to go beyond reticle size boundaries (e.g., waferscale)
- Scale-out waferscale chiplet-based design requires new (co)design methodologies: new ways to look at (old) problems
 - Test, reliability and fault tolerance
 - Physical design
 - Power distribution
 - Heat extraction

Acknowledgements

- CDEN, CHIPS centers and Qualcomm Innovation Fellowship for funding
- Students: Saptadeep Pal, Irina Alam, Krutikesh Sahoo, Shi Bu, Haris Suhail, Nick Cebry, Jingyang Liu, Daniel Petrisko, Matthew Tomei
- Collaborators: UCLA: Subramanian S. Iyer, Sudhakar Pamarti. UIUC: Rakesh Kumar

