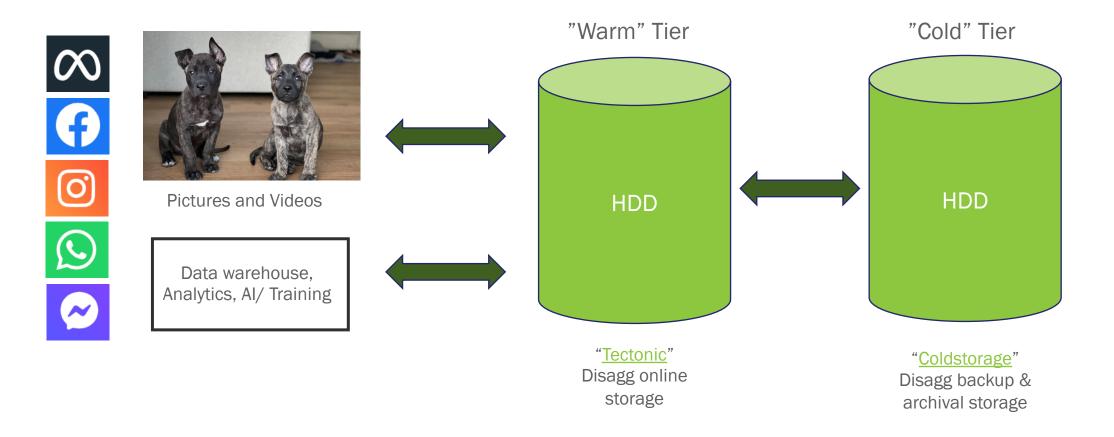
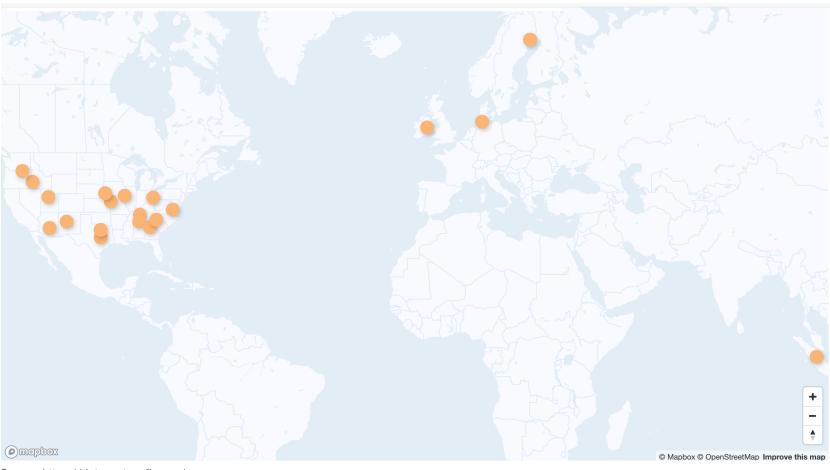
HDD FEATURES FOR THE FUTURE


Meta's perspective

Madhavan Ravi, Meta

HDD Usecases - 30,000ft view


Global Connectivity snapshot

- 2010 snapshot above
- We've grown ~10x in our DAU metric from 2010 to now just on the Facebook product. Imagine how this map morphs. Now add Instagram, Whatsapp, Messenger,

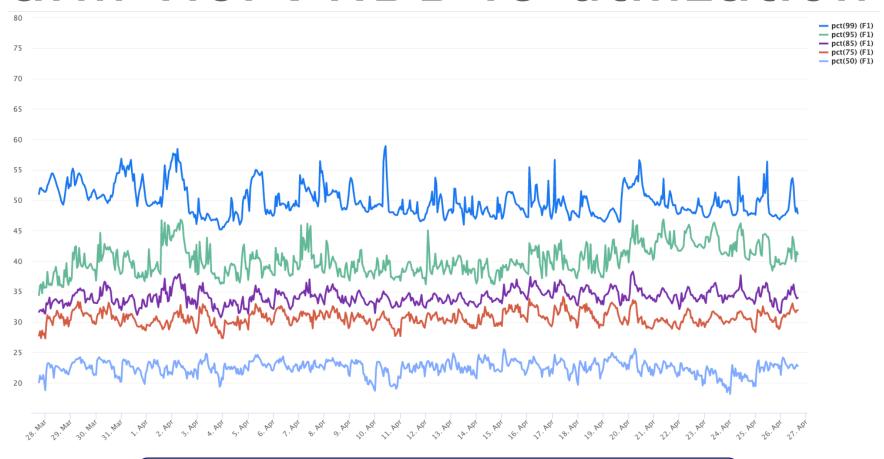
Meta's Datacenters

Source: https://datacenters.fb.com/

Warm HDD Tier Storage Evolution

<u>Past</u>

- 1 Customer per cluster
- Homogeneous workload per cluster
- Localized workload extremes across clusters
- 100s of clusters
- No rebalancing to optimize for IO demand
- No caching layer in Datacenter
- Trends
 - BLOBstore → Storage bound on HDD
 - Data Warehouse → IO bound on HDD


Present

- Datacenter building
 - Storage fabric hosting many tenants
- Operate 10s of clusters
 - Each cluster is up to 10x larger than the past
 - More HDDs to share the IO load
- Rebalance data to move more cold data to bigger HDDs
 - All spindles share the IO load equally
- Read caching on SSD in both
 - HDD Storage Node
 - Network-connected SSD Storage Nodes

Goal: Remain Storage bound on HDDs

Warm Tier: HDD IO utilization

Higher IO utilization on HDD -> longer tail latencies Prevents HDDs from being used to their full IO capacity

Cold HDD Tier Evolution

- HDD cold tier has not evolved over time
 - Highly power- and cost-optimized solution
 - Only power ON 7-8% of HDDs per Server at a time
 - Workloads are random, large blocksize requests (MBs to GB)

Trend: Remain Storage Bound

What Meta cares about in HDDs

- ➤ Keep up the HDD Capacity CAGR
 - Translates to TCO savings and W/TB (power footprint) savings
 - Is 10 platters per HDD the limit?
 - Accelerate HAMR/MAMR product delivery
- > Power optimizations/opportunistic power savings
 - W/TB savings while meeting latency requirements
- ➤ IO priority mechanisms
 - All IO requests are not equal
 - Ability to use 100% of available IO capacity per HDD, without tail latency impact
- Bring modest throughput increments per HDD
 - W/TB is the metric for improvement
 - Excited about bit per inch (BPI) improvements in HAMR and MAMR to help with this
- > Data and metadata persistence mechanism improvements on power loss
 - Write cache data safety (<10 seconds time-to-persist requirement)
 - Write pointer hardening on open SMR zones

HDDs features to use and/or explore

Feature	"Warm" Tier	"Cold" Tier
HDD Write Cache	Required	Disabled
Secure Boot, Signed FW update, chain of trust, secured/disabled debug ports	Required	
PRIO (high and low IO priority)	Evaluating	N/A
Command Duration Limits (CDL)	High Interest	N/A
Power Balance/Adv. Power Mgmt	Evaluating	
Attestation	Highly Interest	
Encryption at Rest/Full disk Encryption	Interest	
SMR	High Interest	
Reman/Head depop	Interest	

NVMe HDD Thoughts

Benefits

- User software stack unification for SSD and HDD storage nodes
- No proprietary drivers needed
- Able to leverage existing SSD tools
- ➤ Critical features for consideration
 - Command Duration Limits
 - SMBus interface for out-of-band temperature polling & management
 - Support for Attestation (SPDM over MCTP) via SMBus and in-band via VDM
 - T10 DIF support

> Feature Concerns

- Resource benefits from IOC+Expander → PCIe Switch
 - Benefits Very small Not an NVMe HDD driver
- HDD connector to optimize out SMBus
 - Very small resource saving
 - Eliminates one of the main value drivers for going to NVMe HDD

Dual Actuator HDD Thoughts

- High power footprint
- Lagging capacity vs single actuator HDDs makes it unattractive today
- Past: Was evaluated due to small, localized cluster challenges
 - Issue is resolved via shared clusters and SSD based caching
- For most high IO load use cases, read caching on SSD will be the power optimized answer

Conclusion: Could be of interest in the future but no application need today

Thank You

Any Quéstions?

