CHIPLETS & SUSTAINABILITY

SRILATHA (BOBBIE) MANNE, CAROLE-JEAN WU

Outline

Sustainability and silicon

Intersection of chiplets and sustainability

Tools and modeling

Carbon Framing

Value Chain Emissions
Upstream Scope 3

Electricity Use Scope 2

Use and Disposal Downstream Scope 3

Framing - Process Scaling

Carbon Breakdown

4300 kg

6700 kg

52 kg

10 kg

Server: Dell R740

Cell Phone: Iphone 13

https://www.delltechnologies.com/asset/en-us/products/servers/technical-support/Full_LCA_Dell_R740.pdf https://www.apple.com/environment/pdf/products/iphone/iPhone_13_PER_Sept2021.pdf

Optimizing for Sustainability

Carbon Characterization for iPhones

Component-Level Carbon Footprint Modeling Tool

Performance, Power, Area, Carbon

- Platform Bill of Materials;
- Supplier Life Cycle Analysis;
- System Specification (CPU, Memory, Storage)

Component-Level Carbon Footprint Modeling Tool

$$CO_2^{total} = CO_2^{operational} + \frac{Time_{application}}{Lifetime_{hardware}}$$

$$CO_2^{embodied}$$

$$carbon intensity * energy use$$

SW design & performance
HW design & power
Fab characteristics
Environmental factors

$$\sum_{i=1}^{N} CO_2^{embodied} package(i)$$

$$\sum_{i=1}^{SoC,DRAM,SSD,HDD} CO_2^{embodied} (i)$$

Component-Level Carbon Footprint Modeling Tool

$$\sum_{i=1}^{N} CO_2^{embodied} package(i) + \sum_{i=1}^{SoC,DRAM,SSD,HDD} CO_2^{embodied}(i)$$

$$CO_2^{embodied}(SoC) = f(yield, Carbon Intensity * Energy_{Manufacturing per area} + GHG_{manufacturing per area}) * Area)$$

$$CO_2^{embodied}(DRAM, SSD, HDD) = CO_{2 manufacturing per GB}(DRAM, SSD, HDD) * capacity(DRAM, SSD, HDD)$$

ACT: Designing Sustainable Computer Systems with an Architectural Carbon Modeling Tool. U. Gupta, M. Elgamal, G. Hills, G.-Y. Wei, H.-S. Lee, D. Brooks, C.-J. Wu. To Appear in ISCA-2022

Carbon as the First Design Principle

- Balance between general purpose, accelerators, and in-between for different application uses
- Fault-tolerance through HW-SW co-design
- Modular system design to leverage unique failure characteristics
- Design for 2nd life, for environmental sustainability, for circularity

Session 9A: Datacenteres and Sustainability --- Wednesday June 22 10:30-10:50AM

ACT: Designing Sustainable Computer Systems With An Architectural Carbon Modeling Tool

Udit Gupta; Mariam Elgamal, Gage Hills; Gu-Yeon Wei; Hsien-Hsin S. Lee; David Brooks; Carole-Jean Wu

github.com/facebookresearch/ACT

Call to Action

USING THE RIGHT TECHNOLOGY NODE

LATE BINDING CUSTOMIZATION (LIMIT DARK SILICON)

REUSE TO REDUCE DESIGN OVERHEAD

ACCELERATORS FOR PERFORMANCE AND POWER SAVINGS

CHIPLETS & SUSTAINABILITY

SRILATHA (BOBBIE) MANNE, CAROLE-JEAN WU

