THE PATH TO A CHIPLET ECOSYSTEM

0

Ò

Ramune Nagisetty Senior Principal Engineer Director, Process and Product Integration Intel CTO Office

LEGAL INFORMATION

This presentation contains the general insights and opinions of Intel Corporation ("Intel"). The information in this presentation is provided for information only and is not to be relied upon for any other purpose than educational. Statements in this document that refer to Intel's plans and expectations for the quarter, the year, and the future, are forward-looking statements that involve a number of risks and uncertainties. A detailed discussion of the factors that could affect Intel's results and plans is included in Intel's SEC filings, including the annual report on Form 10-K.

Any forecasts of goods and services needed for Intel's operations are provided for discussion purposes only. Intel will have no liability to make any purchase in connection with forecasts published in this document. Intel accepts no duty to update this presentation based on more current information. Intel is not liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly or indirectly, from the use or misuse of the information in this presentation. Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

Copyright © 2019 Intel Corporation.

Intel, the Intel logo, are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others

RAPIDLY CHANGING WORKLOADS AND APPLICATIONS

Data, AI, and Infrastructure

I/O Variety & Complexity

Rise of Disruptive Architectures Increasing Bandwidth Requirements ... ARE DRIVING NEW INNOVATION PARADIGMS

PACKAGE IS A PLATFORM FOR INNOVATION & AGILITY

TECHNOLOGY DRIVERS

(e.g. heterogeneous integration, reticle limited die, IP porting)

MARKET REQUIREMENTS

(e.g. form factor, accelerators, 3rd party IP, custom solutions)

8th Gen Intel[®] Core[™] Intel high-performance CPU, HBM2 and AMD* discrete graphics

Intel[®] Stratix[®] 10 FPGA HBM + RF XCVR

Intel[®] Lakefield 3D die stacking

PACKAGE-LEVEL INTEGRATION EXPECTED TO GROW FURTHER

ITRS 2.0 Roadmap Focuses on Heterogeneous Integration and Connectivity

Multivendor Interoperable HBM (High Bandwidth Memory)

27% CAGR in 2.5D/3D Packaging

Connectivity ory)

ADVANCED MCP LANDSCAPE

Si Interposer

- Key Feature Scaling Metrics:
- IO/mm/Layer (Escape Density)

Die Eda

• IO/mm² (Die Area)

Technologies with silicon back-end wiring have the highest wire densities

INTEL® EMBEDDED MULTI-DIE INTERCONNECT BRIDGE (EMIB) Technology

Intel[°] Stratix[°]10

Intel® Stratix® 10 FPGAs and SoCs with Intel EMIB Package Lid Die FPGA Die Package Substrate

Flip chip bump pitch 100 um

HBM μ bump pitch 55 um

2D/2.5D DENSE MCP TECHNOLOGIES

EMIB

Localized high density wiring No practical limits to die size Standard assembly process Bridge manufacturing much simpler Bridge silicon costs < Silicon interposer No TSVs, Significantly less silicon area

Increased package manufacturing complexity

Silicon Interposer

CTE Matched with Si Excellent chip-attach alignment Pitch scaling

Efforts in place to develop larger than reticle interposers

Interposer size is typically limited by reticle field • TSV capacitance impacts signal integrity of offpackage links Interposer attach adds an extra chip attach step

NEW PACKAGING STANDARDS

🕿 Near On-Di
Capability

	On-board	On-package (FCxGA)	EMIB
Distance (mm)	1000	2-50	1-3
Wire Density (lines/mm/layer)	Up to 15	35	1000+
Power (pJ/bit)	7-20	1-2	<1
BW/shoreline (Gbps/mm)	200	250	1000+
Standards	PCIe, DDR		AIB*, HBM

INDUSTRY HAS REACHED AN INFLECTION POINT

Rapidly Emerging New Workloads & Disruptive Architectures Breakthroughs in Packaging Capabilities Approach On-Die Solutions

New Interface Standards for Package-Level Integration

WE HAVE AN OPPORTUNITY TO SCALE ECOSYSTEM INNOVATION **THROUGH PACKAGE LEVEL INTEGRATION OF CHIPLETS**

DEMONSTRATED RANGE OF CHIPLET SOLUTIONS

Kaby Lake G

Silicon	Multiple foundries and nodes	Multiple foundries and nodes	Internal sili nodes
Interface	 Industry standard HBM (over EMIB) PCIe (over Std Pckg) 	 Industry standard HBM (over EMIB) AIB (over EMIB) 	ProprietaLogic on l
Comments	 Smaller form factor Best in class IP Same die can be used on board or in package Most flexible and quickest TTM 	 AIB die2die PHY supports EMIB & CoWoS FPGA can be configured for different protocols Mix-n-match approach 	 Top and k for floor p thermals Limited in re-use

Package

Lakefield

icon on various

ary interfaces logic 3D stacking

bottom die co-design planning and

nteroperability and

LEVEL OF INTEGRATION DETERMINED BY CAPABILITIES AND **REQUIREMENTS. ENABLED BY STANDARDS AND BUSINESS MODELS.**

Standardized motherboard interfaces enable the PC ecosystem

Package Level Integration

Standardized chiplet interfaces enable a package-level integration ecosystem

SOC Disaggregation

Standardized SOC interfaces (AMBA/AXI) enable foundry ecosystem

From Board to Package

Benefits	Smaller form factor Higher bandwidth, lower latency Power efficiency
Challenges	Business models Known good die, cost Thermal limits

Benefits	IP portability/suit Potential lower N Address reticle si
Challenges	Form factor, band Silicon area/powe Manufacturing co

To Package from SOC

tability IRE cost & TTM ize limits, yield dwidth, latency,

er overhead

ost

TEST AND THERMAL CHALLENGES

Heterogeneous integration drives the need for true KGD

- Comprehensive content at wafer sort

Extremely challenging to probe fine pitch bumps

- Achieve desired coverage without contacting micro-bumps
- Develop HVM methods for Micro-Bump probe

Thermal challenges driven by power, power density, and thermal cross-talk

Need thermal co-design, improved TIMs + power/thermal management

CHIPLET INTEROPERABILITY ENABLED BY SPECIFICATIONS AND TOOLS

Mechanical

- Bump and wire sizes
- **Bonding footprint**
- xyz constraints

Power/Thermal

Power & thermal • modeling and cooling solutions

- Power delivery
- Noise margin •
- Capacitance ٠

	0ns 10ns 20ns 30
CLK	
til_start_v	
til_start_cnt	$-\sqrt{0}(1)(2)(3)-\sqrt{0}(1)(2)(3)$
til_start_params	-000001
til_start_qid	-(0)(0)(0)(0)(2)(
eng_til_start_bp[0]	
eng_til_start_bp[1]	
eng_til_start_bp[2]	/

- debug, etc.

- Lower productization and NRE cost ullet
- Industry standard test and DFX \bullet
- Functional safety, certification, and traceability •
- Business model and supply chain enablement \bullet
- Easy to use Tools/Flows/Methods

. To minimize area/power/cost and support industry scale interoperability

Data/transaction specifications Management: power, security,

Configuration & statistics Manufacturing test access

CHIPLET INTEROPERABILITY ENABLED BY SPECIFICATIONS AND TOOLS

Mechanical

- Bump and wire sizes
- **Bonding footprint**
- xyz constraints

modeling

Power & thermal • modeling and cooling solutions

- Power delivery
- Noise margin •
- Capacitance ٠

	0ns 10ns 20ns 3
CLK	
til_start_v	
til_start_cnt	-(0)(1)(2)(3)(0)
til_start_params	-00000
til_start_qid	-0/0/0/0
eng_til_start_bp[0]	
eng_til_start_bp[1]	
eng_til_start_bp[2]	

- debug, etc.

- Lower productization and NRE cost ullet
- Industry standard test and DFX \bullet
- Functional safety, certification, and traceability •
- Business model and supply chain enablement \bullet
- Easy to use Tools/Flows/Methods

. To minimize area/power/cost and support industry scale interoperability

Data/transaction specifications Management: power, security,

Configuration & statistics Manufacturing test access

CHIPLET INTEROPERABILITY ENABLED BY SPECIFICATIONS AND TOOLS

Mechanical

- Bump and wire sizes
- **Bonding footprint** •
- xyz constraints

Power/Thermal New IEEE 2416

standard for power modeling

Power & thermal • modeling and cooling solutions

- Power delivery
- Noise margin
- Capacitance ٠

reach PHY

- debug, etc.

- Lower productization and NRE cost ullet
- Industry standard test and DFX \bullet
- Functional safety, certification, and traceability •
- Business model and supply chain enablement \bullet
- Easy to use Tools/Flows/Methods

To minimize area/power/cost and support industry scale interoperability

Functional

New PIPE V5.2 support for configurable short

 Data/transaction specifications Management: power, security,

Configuration & statistics

Manufacturing test access

POWER MODELING STANDARD IEEE 2416-2019

IEEE P2416 WG: ARM, Cadence, IBM, Intel, Si2

- Si2 UPM WG: ANSYS, Cadence, Entasys, IBM, Intel, Thrace Systems
- Standardized interoperable system-level power model
 - Independent of voltage & temp
 - Allows many different levels of abstraction from IP Block > chiplet > SOC/SIP
 - Early insight into electro-thermal effects
- Common modeling language targets 3 classes of users
 - Model producers: those developing power models
 - Model consumers: those using power models to estimate power
 - Tool developers: those building EDA power modeling tools

Future: include static/dynamic thermal modeling & process variation

PIPE V5.2 SUPPORT FOR SHORT REACH APPLICATIONS

¹New Open IP/Specification ² Existing Open Standard

Configurable Short Reach PHY (sec 2.6)

- Potentially 50% active power reduction
- Reduce power state transition times & reduce cost by moving from AC coupling to DC coupling

Carry over board-level ecosystem

- Same Si could be used for both boardlevel & package-level integration
- Mature ecosystems for Si, validation, software, etc.
- Multi-vendor interoperability
- Supports PCIe, CXL, DMI, UPI, CCIX, SATA USB3.x & DisplayPort

A DEMONSTRATED RANGE OF INTEGRATION SOLUTIONS MORE TO BE DONE ON STANDARDS, TOOLS, AND BUSINESS MODELS TO BUILD THE FOUNDATION OF THE EMERGING CHIPLET ECOSYSTEM

PACKAGING IS A PLATFORM FOR INNOVATION, AGILITY, FLEXIBILITY

SUMMARY & CONCLUSION

