Chiplet Data Exchange Service

Jawad Nasrullah, zGlue Inc.
Alex Wright-Gladstein, Ayar Labs, Inc.
ODSA Meeting
6/10/2019
Problem Statement

Chiplet Selection

Designer need a number of design collaterals to make a choice of components for a given application and to complete a design. These include at minimum;
- Product Briefs
- Data Sheets
- PCB/Substrate Design Resources

With complicated chips, traditional PCB type design flows are limiting and will not easily scale. Also there are too many ways to describe chiplets.

Chiplet Design Data Exchange

There is no one standard way to express basic information: A standard format should be simple and usable across different tools
- Design Entry tools
- Layout tools
- Simulators (PI/SI, Thermal, Behavioral)
- Test

BUT There is a question of what info people are willing to share. Hence we did a survey.
Survey Question Overview

1. I can share what my chiplet’s function is (i.e. a high-level description of what the chip does):
2. I can share the number and value of voltage rails:
3. I can share pin-by-pin functional information (i.e. EC table / AbsMax):
4. I can share the size (X and Y dimensions) of my chiplet:
5. I can share bump physicals (pitch, location, thickness, and tolerances) of my chiplet:
6. I can share height (Z dimension) of my chiplet:
7. I can share a heat map of my chiplet:
8. I can share what mechanisms I provide to test for chip functionality prior to assembly:
9. I can share what mechanisms I provide to test for chip functionality post assembly:
10. I can share my business model (wafer with known good die map vs. individual die or other):

 a) As public information
 b) Through a tool with a standard agreement in place
 c) Directly with an interested company with a two-way NDA in place
 d) I cannot share this information
Survey Respondents: An Overview

- 50 responses
- 38 familiar with ODSA and/or chiplets, 10 familiar with chips, 2 not familiar
- Job functions:

<table>
<thead>
<tr>
<th>Role</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architect</td>
<td>15</td>
</tr>
<tr>
<td>Executive Management</td>
<td>10</td>
</tr>
<tr>
<td>Business Development and Marketing</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Management</td>
<td>9</td>
</tr>
<tr>
<td>Mechanical Engineer</td>
<td>3</td>
</tr>
<tr>
<td>Electrical Engineer</td>
<td>4</td>
</tr>
<tr>
<td>Hardware Engineer</td>
<td>1</td>
</tr>
<tr>
<td>Cloud Provider</td>
<td>1</td>
</tr>
</tbody>
</table>

“Architects”
“Exec Mgmt, BD, & Mktg”
“Engineers”
Survey Results: An Overview

ODSA Survey Response Overview

- Green: As public information
- Blue: Through a tool with a standard agreement in place
- Orange: Directly with an interested company with a two-way NDA in place
- Red: I cannot share this information

Question

Number of responses

- Chiplet function
- Voltage rails
- Pin functional info
- X and Y dimensions
- Bump physical
- Z dimension
- Heat map
- Pre-assembly test function
- Post-assembly test function
- Business model

Survey Results: Engineers

ODSA Survey Responses - from Engineers

- Consume
- Collaborate
- Contribute
Survey Results: Architects

ODSA Survey Responses - from Architects

- Consume.
- Collaborate.
- Contribute.
Survey Results: Execs, BD & Mktg

ODSA Survey Responses - from Execs, BD & Marketing

- Consume
- Collaborate
- Contribute

Legend:
- Green: As public information
- Blue: Through a tool with a standard agreement in place
- Orange: Directly with an interested company with a two-way NDA in place
- Red: I cannot share this information

Questions:
- Chiplet function
- Voltage rails
- PIN functional info
- X and y dimensions
- Bump physics
- Z dimension
- Heat map
- Pre-assembly test function
- Post-assembly test function
- Business model

Number of responses
Chiplet Data Exchange Design Process

- DSA Spec
- Chiplet ZEF Library
- Chiplet Data Exchange Service
- Package Info
- Select Accelerator Chips
- Chiplet Netlist Generator
- System Netlist Design
- Interposer Design (Organic or Si)
- Package Design
- PChiplet Netlist (PCB)
- Devkit/SLT PCB System

The Data to be provided in a CSV format with a number of standardized variable names;

For Example Try Reading the following Chiplet

```
x  y  z
1280 1790 520
```

A More Complete Mechanical:
Reference, Part_value, MPN, Order_Number, Container, Pieces_per_unit, Name, Pkg_type, Pkg_IPC_code,
SMT_compatible, Width_x, Width_tolerance, Length_y, Length_tolerance, Thickness_z, Thickness_tolerance,
Count_IO, Bump_pitch, Bump_pitch_tol, Bump_dia, Bump_dia_tol, Bump_thickness, Bump_thickness_tol,
Bump_material, Mold Material, Reflow Profile

More details at https://github.com/zglue/ZEF
Next Steps

• Further Develop Chiplet Data Exchange Service Concept

• Plan Meetings with leading IDM, Foundry and Packaging Companies – Review survey results

• Issue CDX template for providers and users to review/adopt
Backup
ZEF – IO Format

For Example Try Reading the following Chiplets

<table>
<thead>
<tr>
<th>Pnum</th>
<th>Pname</th>
<th>Sig Type</th>
<th>IO Type</th>
<th>Diameter</th>
<th>X center</th>
<th>Y Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>CS#</td>
<td>DI</td>
<td>BALL</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>B2</td>
<td>GND</td>
<td>V</td>
<td>BALL</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>C1</td>
<td>RESET#/SIO3</td>
<td>DIO</td>
<td>BALL</td>
<td>0.2</td>
<td>-0.3</td>
<td>0</td>
</tr>
</tbody>
</table>

A More Complete Mechanical:

IO_Name, IO_Reference, Signal_type, IO_mechanical_type, Populated, Solder_Type, Ball_dia, Ball_thickness, Land_dia, Land_x, Land_y, SMD_clearance, Center_x, Center_y, Signal_type, Singal_group, Netlist_name, Vdd, Gnd, Vmax, Vnom, Vmin, Imax, Inom, Imin, Pmax, Pnom, Pmin, Rmax, Rnom, Rmin, Lmax, Lnom, Lmin, Cmax, Cnom, Cmin, Tmax, Tnom, Tmin, Count_Modes, Mode_Name, Is_RF, Controlled_Impedance, ESD_type, Is_DFT, Overloade_num