

Minipack and F16, Software

Alex Eckert, Software Engineer Facebook

Minipack and F16, Software

Software everywhere

Management plane

Control plane Data plane Platform

Wedge

16 x 40G - RSW

FBOSS Overview

Sixpack

128 x 40G - FSW

32 x 100G - RSW

Backpack

32 x 100G - RSW

Fabric Aggregator

N x 100G - FA

Minipack

128 x 100G - FSW, SSW, FA

New challenges (Minipack)

➢ Modular switch, single control plane

Different PIM types, variety of port speeds

External phy support (Broadcom)

►I2C to 128 optics, MDIO, FPGA

≻New microserver (MiniLake), New ASIC (Broadcom TH3)

≻Cooling 128 optics in only 4 RU

128 x 100G - FSW, SSW, FA

Arista 7368X4

128 x 100G - FSW, SSW, FA

New challenges (FBOSS on Arista)

➢ First time operating FBOSS on non-FB hardware

- Different external phy (Credo), Different FPGA
- ≻Unfamiliar microserver, no off-the-shelf UEFI BIOS
- ≻Must manage as either FBOSS or EOS in production
- ➤Complex conversion process b/w EOS / FBOSS

128 x 100G - FSW, SSW, FA

Combinations

- ≻Two switch models
- ➤Modularity
- ≻Three layers of F16 network
- ➤Same binary everywhere

Common abstractions

New microservers!

MiniLake

New microservers!

Arista control module

OCP Open System Firmware

Conversion

FBOSS Overview

Minipack Hardware Components

Data path

Management path – I2C

Management path – MDIO

Programming External PHYs

Programming External PHYs

Programming External PHYs

State management problem

Switch State

FBOSS Agent

Platform Configuration

Each port + speed has unique settings (PlatformPortSettings)

- Model config as a map<speed, PlatformPortSettings>
- Hides complexity from SwSwitch

Testing strategy

➤Targeted tests in realistic lab environments

> Deploy early

➤Invest in automation

Scale challenge

Test all combinations

Deploy early

Invest in automation

≻Automate as much as possible of our lab testing

Develop targeted ASIC data plane tests

Test specific asic functionality, verify, warm boot

SwSwitch

Utilize common FB testing infra

Good • fboss_test_infra • 12.81 sec	Good Tests
<pre>netcastle_test/fboss_bcm/tomahawk_alpm/6.4.10-4_6.5.13-1 - AclEmptyCodeIcmp (warm_boot.BcmAclQualifierTest) architecture: x86_64, buildsystem: buck, compiler: gcc, sanitizer: none • Good • fboss_test_infra • 416.86 sec</pre>	1,913
<pre>netcastle_test/fboss_bcm/tomahawk_alpm/6.4.10-4_6.5.13-1 - AclIcmp6Qualifiers (cold_boot.BcmAclQualifierTest) architecture: x86_64, buildsystem: buck, compiler: gcc, sanitizer: none Good · fboss_test_infra · 12.89 sec</pre>	Broken Tests
<pre>netcastle_test/fboss_bcm/tomahawk_alpm/6.4.10-4_6.5.13-1 - AclIp4TcpQualifiers (warm_boot.BcmAclQualifierTest) architecture: x86_64, buildsystem: buck, compiler: gcc, sanitizer: none • Good • fboss_test_infra • 71.08 sec</pre>	A Flaky Tests
<pre>netcastle_test/fboss_bcm/tomahawk_alpm/6.4.10-4_6.5.13-1 - AclMirror (cold_boot.BcmMirrorTest/1) architecture: x86_64, buildsystem: buck, compiler: gcc, sanitizer: none • Good • fboss_test_infra • 8.55 sec</pre>	0
<pre>netcastle_test/fboss_bcm/tomahawk_alpm/6.4.10-4_6.5.13-1 - AclMirror (warm_boot.BcmMirrorTest/1) architecture: x86_64, buildsystem: buck, compiler: gcc, sanitizer: none Good fboss test infra * 1182.56 sec</pre>	✓ New Tests

>Minipack is a powerful modular building block for our networks.

Software support for modularity has its challenges.

>We were able to overcome these challenges through improved hardware layer abstractions and investing heavily in early deployment and automated testing.

Thank you

Open. Together.

OCP Global Summit | March 14–15, 2019

