

From PUE via EUE to Synergy

Wim Buters Principal Commercial Officer Asperitas

San José (CA) March 15th 2019

Background

Asperitas Immersed Computing Principal Commercial Officer, per Sept 2018

Deerns Engineering Business Unit Manager Data Centers, per April 2009

Tata Steel Europe Various Technical & b2b Commercial roles, per October 1989

PUE was great for guidance

- PUE was the focus, leading to improvements, leading to impressive achievements in industry
- Technology is available to perform well below 2 approaching PUE 1.1 or less
- Successful technology implementation now depends on client's business case and geography
- Business case more and more influenced by politics and pressure of society

IT + (Coolin

имміт

IT

Impressive achievements on PUE for data centers 200

OCP

Past practice **PUE optimised**

OCP Immersion

So what is happening?

- CAGR data center industry steady above 10%
- Global power consumption growth
- Major part still fossile fuel powered
- Associated global CO₂ emission growth

COP24 KATOWICE 2018 JNITED NATIONS CLIMATE CHANGE CONFERENCE

MMIT

• A fundamental DC change is needed, a New Game has started

Energy Reuse Effectiveness

the benefit of reusing energy from a data center. ERE = 0 means all energy reused ERE = PUE means no energy reused

ERE, or Energy Reuse Effectiveness, is a metric for measuring

$ERE = \frac{IT + (Cooling + Power + Lighting) - Reuse Power}{1}$

The New Game, consequences for future data centers on:

- IT/Data center process
- Excess heat (former waste heat)
- Electricity
- CO_2
- Energy storage

The New Game is about combining Heat and Compute in space and time

Heat and Compute, current state

Values for a 1MW (IT power) showcase

150 Residences /

Energy reuse, future state data centers, combination in space

Daily and seasonal dynamics future for data centers, combination space and time

Current European scene (selection)

- Excess heat reuse adopted in Scandinavia and scaling up (Denmark Esbjerg, Sweden Stockholm, Finland Mäntsälä)
- Transition to non-natural gas heating ongoing in The Netherlands
- Thermal Storage (ATES) mature and common practice
- Large scale electrical buffering (a.o. The Green Bay) planned
- Small scale Combined Heat and Compute by Qarnot France

MMIT

• Volkswagen Financial Services data center supplying excess heat to adjacent private users (approx. 800MWh/year)

Players in The New Game for future data centers (alphabetical order)

- Consumers of CO₂ (agricultural)
- Consumers of heat (many)
- Data center operators and/or owners
- Data center designers and users
- Government
- Urban planners and developers
- Utility grid operators
- Utility providers

Energy traction

- Electrification of heat
- Smart energy
- Thermal grids

имміт

Open. Together.

DUTCH DATACENTER ASSOCIATION

Hyperscalers are setting the liquid scene

Solid State Drive

Google Shifts to Liquid Cooling for AI Data Crunching

BY RICH MILLER - MAY 8, 2018 - LEAVE A COMMENT

OCP

SUMMIT

Long Live the IoT Platform JUN 20, 2018

Switching Gears on Data Center Security

JUN 19, 2018

DataCenter Knowledge. Sign up for our newsletters! The latest news, insights, and exper advice from DCK. SUBSCRIBE

Lenovo Aims New Liquid Cooling Designs at Mainstream Data Centers JUN 19, 2018

Alibaba to Use Own Immersion Cooling Tech in Cloud Data Centers

Plans to contribute technology to Open Compute Project

News

Topics • Forums • Shopping • Tech Show Portal Marketplace HWZ Presents

QL

Your email address:

 \sim

At GTC 2018, Baidu brought some serious hardware. The Baidu X-MAN is a liquid cooled 8way NVIDIA Tesla V100 shelf that shows how the company is grappling with the power

Back to the data center: Infrastructure requirements for liquid technology

- Liquid infrastructure in the whitespace
 - Air: Water based CRACs
 - Air: In-row water based coolers
 - > Air/Liquid : Rear door water based coolers
 - Liquid: Direct Liquid to Chip
 - Total Liquid Cooling: Enclosed immersion
 - Total Liquid Cooling : Open bath immersion
- Adiabatic/dry-cool combination
- Phasing out of chiller/DX technology

MMIT

Liquid Penetration

- Liquid (thermal) infrastructure for transport and buffering in urban areas
 - Project driven, or
 - Policy driven
 - Bottom line always financials driven
 - Sustainability add-ons:
 - > Heat pumps
 - Generation 4 heat grids (see next)
 - > Temperature chaining (see next)

Generation 4 heat grids

Integrated lowenergy space heating, cooling and hot water systems

Waste heat recycling and integration of renewable heat

Institutional framework for case planning

Smart Thermal Grid low-temperature network

Integrated part of operation of smart energy systems incl. cooling

Optimising liquid infrastructures

TECHNOLOGY	TYPICAL	
	INLET	OUTLET
CRAC (generic)	6-18°C	12-25°C
ILC (e.g. USystems)	18-23°C	23-28°C
DLC (e.g. Asetek)	18-45°C	24-55°C
TLC (e.g. Asperitas)	18-40°C	22-48°C

TECHNOLOGY	EXTREME	
	INLET	OUTLET
CRAC (generic)	21°C	30°C
ILC (e.g. USystems)	28°C	32°C
DLC (e.g. Asetek)	45°C	65°C
TLC (e.g. Asperitas)	55°C	65°C

Open. Together.

< /

technology cascading

Create High ΔT

- 3-stage cooling for optimal water volume utilisation
- Below 28°C/82°F, chiller (coolant evaporization)
- Between 28-35°C/82-95°F, adiabatic (water evaporization)
- 35°C/95°F and above, free cooling with closed water based system

- 44°C/111°F
- 60°C/140°F

Valuable heat

Temperature cascading, example

- Closed room 3-stage configuration
- ILC setup maintains air temperature WS
- Water volume decreased by 85% $\succ \Delta T 6^{\circ}C: 30 l/s, at \Delta T 40^{\circ}C: 4.5 l/s$ only!
- Cooling options
 - Closed cooling circuit with pumps and coolers
 - Closed cooling circuit with pumps and reuse behind Heat Exchanger

UMMIT

 \mathbf{O}

What needs to be done?

- Focus on external heat consumption > Preferably free cooling guarantee
- Government involvement
 - > Incentives (tax, permit, other)
 - > Intermediate for (industrial) heat reuse
 - > Information footprint as part of district planning
- More (low temperature) heating networks to be developed
- Focus on TCO, not just CAPEX
- PUE need for a new "easy" metric
 - > PUE systematics may easily be misinterpreted
 - > PUE discourages IT efficiency

> New metric needs to give insight in actual efficiency

UMMIT

Industry wide engagement needed for future generation Data Centers

- Time is running out

- Industry standardization has started a.o. via OCP • Leaders set the standards, technology, temperatures etc. just like we have set the ASHRAE (air) envelope in the past • Together we have the required skills and knowledge • The Future Data Center is not only about what is in it, but certainly what is **around** it

Join the New Game!

лими

Open. Together.

OCP Global Summit | March 14–15, 2019

