DC-SCM 2.0 LVDS Tunneling Protocol & Interface (LTPI) Introduction
DC-SCM 2.0 LVDS Tunneling Protocol & Interface (LTPI) Introduction

John Leung, Principal Engineer, Intel
Kasper Wszolek, Principal Engineer, Intel
Yi (Roy) Zeng, Principal Engineer, Intel
Agenda

• Background
• LTPI Introduction
• Key features
• Call to Action
Background

- DC-SCM modular designs moves substantial part of server platform on a module (BMC, Root Of Trust, Front Panel, SPI Flashes & TPM)
- DC-SCM 1.0/2.0 SFF-TA1002 4C+ connector is limited to 168 pins and cannot accommodate all low speed and high pin count interfaces
- 2 x Serial GPIO (9 pins) interfaces are defined in DC-SCM 1.0 to tunnel GPIO signals between HPM platform and DC-SCM Module
LTPI Introduction

DC-SCM 2.0 LTPI:
- DC-SCM 2.0 introduces high-speed and scalable Low-voltage differential signaling Tunneling Protocol & Interface (LTPI)
- LTPI uses 4 differential links (8 pins) in place of 2 Serial GPIO interfaces from DC-SCM 1.0 and can be used to tunnel more than just GPIOs making room for DC-SCM evolution
LTPI Overview

SCM

- BMC
 - GPIOs
 - I2Cs
 - UARTs
 - OEM
 - Config

- SCM CPLD
 - LVDS Channels
 - LVDS – TX DAT, TX CLK, RX DAT, RX CLK

HPM

- HPM FPGA
 - GPIO
 - I2C
 - UART
 - OEM Intf.
 - Config Intf.
 - I2C/Smbus/PMbus Slave Devices
 - HPM UART Interfaces
 - OEM-defined interfaces
 - Interface to LVDS CSR Space

CPU Alerts, VR WARNINGS, Power Status, I2C/PMBus Alerts, SCM Status & Control, Mux Selects, Power Throttle Requests, Power Throttle Controls
Key features Re-cap

<table>
<thead>
<tr>
<th>Key Features</th>
<th>Benefits and Value Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVDS I/O (Low-Voltage Differential Signaling)</td>
<td>- Improved Signal Integrity and Bandwidth comparing to Single-ended
 - Supported by most of CPLD & FPGA</td>
</tr>
<tr>
<td>AC-coupling</td>
<td>- Allows for multiple LVDS voltage standard use
 - Improved CPLD/FPGA interoperability</td>
</tr>
<tr>
<td>Multiple interfaces tunneling</td>
<td>- Supports tunneling of more interfaces than just GPIO: SMBus/I2C, UART, Data Channel</td>
</tr>
<tr>
<td>High bandwidth capabilities</td>
<td>- Reference designs running at 200Mbps
 - Latest FPGAs support LVDS at 1600 Mbps</td>
</tr>
<tr>
<td>Scalability & Flexibility</td>
<td>- Specific designs can choose which interfaces are tunneled with LTPI
 - OEM Extensions can be added to LTPI as OEM channels
 - Data Channel allows for random access and data exchange between DC-SCM CPLD and HPM CPLD</td>
</tr>
<tr>
<td>Interoperability</td>
<td>- Link training and capabilities exchange protocol defined
 - BMC controls the process of LTPI bring-up and configuration</td>
</tr>
</tbody>
</table>
Call to Action

• Full LTPI Introduction on demand video is available on Virtual Summit Site
• Join us in Experience Center and Virtual EC to see the Demo of LTPI interface:
 • Intel Demo of LTPI Implementation on Intel Max10 CPLDs (Virtual EC only)
 • Lattice Demo of LTPI Implementation on Lattice MachXO3 FPGAs
• Provide feedback to OCP HW Management Module Subproject

Project Wiki with latest specification:
https://www.opencompute.org/wiki/Hardware_Management/Hardware_Management_Module

Mailing list: OCP-HWMgt-Module@OCP-All.groups.io
Thank you!