OPEN POSSIBILITIES.

Data Center Liquid Distribution Guidance & Reference Designs

Track: CE

Data Center Liquid Distribution Guidance & Reference Designs

Panelists:

John Gross, Owner, J. M. Gross Engineering John Menoche, Solutions Architect, Vertiv John Musilli, Solutions Architect, CPS Moderator:

Don Mitchell, Division Manager, Victaulic

OPEN POSSIBILITIES.

DATA CENTER LIQUID DISTRIBUTION GUIDANCE & REFERENCE DESIGNS

Revision 0

Authors:

Don Mitchell (Victaulic); John Menoche (Vertiv); John Gross (JMGross Engineers); Vali Sorell (Microsoft), John Musilli (CPS/Integra)

Contributors/Reviewers:

John Bean (GRC); Jorge Padilla(Google); Jeremy Rice (Google); Nishi Ahuja (Intel); Mark Lommers; Michael Gonzalez (CEJN); Cosimo Pecchioli (Alfa Laval); Le Yu; Patrick Giangrosso; Aaron Duda; Brian Evans; Rich Donaldson, Thomas Squillo; Jack Kolar; Sean Sivapalan (Intel); Jason Rafkind; Nishi Ahuja, (Intel); Michael Beatty (Nalco); Brandon Peterson (CoollT), Jaclyn Schmidt (CoollT), Masud Karim, John Peterson, Jason Matteson (Iceotope), John Groenewold, Marcus Moliteus(Aligned), Matthew Winter(Global Switch), Joe Capes (LiquidStack); Gerard Thibault (KAO), Dale Sartor, David Quirk, Herb Radlinger, Mark Dansie, Bret Lehman (PCX Corp), Madhusudan Iyengar (Google), Caleb Lusk (Rittal), Hamid Keyhani, Rolf Brink (Asperitas), John Fernandes (Facebook), Sean Sivapalan (Intel); Rob Bunger (Schneider); Isabel Rao (CoollT), Raul Alvarez (Submer); Rob Sty; Alex McManis (GRC); Greg Towsley (Ebara); Eugene Maritz

OCP Advanced Cooling Facilities

Advanced Cooling Facilities the Bridge between DCF and ACS

Liquid Distribution Guidance & Reference Designs

ADVANCED COOLING FACILITIES

Design Considerations

Case 1- Addition to existing Facility Water System (Chiller Plant Loop)

Case 2 - Addition to Elevated Temperature Loop (no Chiller Plant)

Beyond Design - Procedures & Commissioning Impact on Operational Success

Virtual Design & Construction Delivery of Liquid Cooled ITE in Life-Cycle

Appendix A. Recommendations for BIM definition and detail content of Vendor solutions

Appendix B. Cooling Distribution Systems

Appendix C: Keys to Success in Data Center Liquid Loops

Appendix D: Risk Analysis (FMEA)

Appendix E. Closed Loop Cleaning Best Practices

Best Practices & Reference Designs

OPEN POSSIBILITIES.

Where Will You Run The Pipes?

Raised Floor

"Step" Floor, integrated CDU Above Floor

Pipe Sizing Factors – Flow, KW, ΔT

FACILITIES

Pipe Size		ASHRAE 90.1-2019 Table 6.5.4.6		Equiv Velocity		ΔΤ				
						4	6	8	10	С
						7.2	10.8	14.4	18	F
DIN	in	I/s	GPM	m/s	ft/s *	Max kW				
50	2	4.95	78	2.3	7.5	83	124	166	207	
65	2-1/2	6.94	110	2.2	7.4	116	174	232	290	
80	3	10.73	170	2.2	7.4	180	269	359	449	
100	4	20.19	320	2.5	8.1	338	507	676	845	
150	6	42.90	680	2.3	7.6	718	1077	1436	1795	
200	8	69.40	1100	2.1	7.1	1162	1742	2323	2904	
250	10	100.94	1600	2.0	6.5	1690	2534	3379	4224	
300	12	145.11	2300	2.0	6.5	2429	3643	4858	6072	

Based on flow rates per ASHRAE 90.1-2019 Table 6.5.4.6 for Variable Flow

* - Values are based on standard weight carbon steel pipe dimensions, ASTM A53

Represents typical design dT for chiller-based systems

Represents dT lower than typical design/operation of FWS systems

Prefab VDC Vision: Concept to Dwg to BOM to Prefab Kit to Installation

NOVEMBER 9-10, 2021

Forms of Prefab

Prefab "kits"

- precision design, self aligning
- · minimal labor hours
- · Lean construction

- · precision design, self aligning
- · Valves installed
- · simplified assembly, minimize labor

- Single SKU for complex assemblies
- · Reduce on site labor hours & issues

Modular Skids

- · Complete pump rooms, optimized design
- · Minimal on site labor

BIM Content = Key to Prefab Success

BIM Content: Vendor Requirement

Key Requirements to support Reference Designs

- 1. Revit RFA format
- 2. Specific geometry modeled (including clearances). 500KB-700KB target size
- 3. Connections for piping, power and drain (if applicable) modeled in dimensionally accurate locations and sizes.
- 4. Electrical connections should have voltage, phase, kVA and load classification parameters as a minimum.

Additional input of design and lifecycle value

- 1. Water-side pressure drops and flow rates identified.
- 2. Telecomm connectors identified and specified
- 3. End user data recommendation:
- All models should be hosted to the floor on which they are placed in the model.
- 5. Designers/engineer "nice to have": Weight, Floor Load (PSF)
 - 1. Maximums: fluid temperatures, pressure drops, flow rates, working pressures

OPEN POSSIBILITIES.

Risk....Science Vs Mythology

Liquid Cooling Mythology

VS Liquid Cooling Reliability Science —

FMEA – Failure Mode & Effects Analysis MTBF – Mean Time Between Failure MOPs, SOPs

Failures are famousReliability is unnoticed

Failure Mode Effect Analysis

Detect Failure Mode Assign Risk Factors

- Severity
- Probability
- Detection

- · Optimize Design
- · Increase MTBF
- · Improve Detection
- · Procedures
- Isolation strategy

#DontFearLiquidCooling - #PlanForIT

Mitigate Risk Factors

- Optimize Design Location, reduction of risk points
- Increase MTBF Require high MTBF of critical components
- Improve Detection Visual, leak detection
- Procedures MOPs, SOPs, EOPs
- Isolation Strategy Isolation valves, redundancy

Mission Critical Systems: Apply SUBSAFE to Data Centers

Design - Holistic solution, to include temperatures, pressures Flexibility and movement.

Quality Control - Traceable to date, location of manufacture and associated quality tests

Installation Performance – leak-proof, maintenance free for 20+ years based on auditable verification of proper installation + pressure test.

Leak Detection & Protection and maintenance plan recommended for components or connections not meeting the mission critical guidance above with 20+ year performance expectation.

Good Design is Key....But Just Part of Success

SLA Considerations

ASHRAE TC 9.9 Table 3.1 2021 Thermal Guidelines for Liquid Cooling						
		Typical Infrastructur	Facility			
Liquid Cooling		Primary	Secondary/ Supplemental	Water Supply Temperature, °C (°F)a		
Class		Facilities	Facilities			
W17	ı	Chiller/cooling tower	Water-side	17 (62.6)		
W27	`	chiller/cooling tower	economizer	27 (80.6)		
W32	ı	Cooling tower	Chiller or	32 (89.6)		
W40	5	Cooling tower	district heating	40 (104)		
W45	ו	Cooling tower	District heating	45 (113)		
W+	}	Cooling tower	system	>45 (>113)		

ASHRAE TC 9.9 - Stay 2 degrees C above dewpoint in ITE space

Table 2: Dewpoint Limits Per ASHRAE					
ASHRAE Class	Max Inlet Temp °C	Max Dewpoint Temp °C			
A1-A4 Recommended	27	15			
Allowable Limits					
A1	32	17			
A2	35	21			
A3	40	24			
A4	45	24			
В	35	28			
С	40	28			

ASHRAE TC 9.9 © 2015

Call to Action

- Get involved in OCP Advanced Cooling Facility Sub-Project:
 - Weekly OCP ACF calls Tuesdays 1100 ET (UTC-4) https://global.gotomeeting.com/join/952298085
 - https://www.opencompute.org/wiki/Data_Center_Facility/ACF-Advanced_Cooling_Facilities
- Mail List: https://ocp-all.groups.io/g/ocp-acf

Open Discussion

