Data Center Liquid Distribution Guidance & Reference Designs

Panelists:
- **John Gross**, Owner, J. M. Gross Engineering
- **John Menoche**, Solutions Architect, Vertiv
- **John Musilli**, Solutions Architect, CPS

Moderator:
- **Don Mitchell**, Division Manager, Victaulic

OPEN POSSIBILITIES.
DATA CENTER LIQUID DISTRIBUTION
GUIDANCE & REFERENCE DESIGNS

Revision 0

Authors:
Don Mitchell (Victaulic), John Menoche (Vertiv), John Gross (JM Gross Engineers), Vali Sorell (Microsoft), John Musilli (CPS/Integra)

Contributors/Reviewers:
John Bean (GRC); Jorge Padilla (Google); Jeremy Rice (Google); Nishi Ahuja (Intel); Mark Lomers; Michael Gonzalez (CEJN);
Cosimo Pecchioli (Alfa Laval); Le Yu; Patrick Giangrosso; Aaron Duda; Brian Evans; Rich Donaldson; Thomas Squillo; Jack Kolar;
Sean Sivapan (Intel); Jason Rafkind; Nishi Ahuja, (Intel); Michael Beatty (Nalco); Brandon Peterson (CoolIT); Jaklyn Schmidt
(CoolIT); Masud Karim, John Peterson, Jason Matteson (Iceotope); John Groenewold, Marcus Voliteus (Aligned), Matthew
Winter (Global Switch), Joe Capes (LiquidStack); Gerard Thibault (KAO), Dale Sarton, David Quirk, Herb Radlinger, Mark Dansie,
Bret Lehman (PCX Corp), Madhusudan Iyengar (Google), Caleb Lusk (Rittal), Hamid Keyhani, Rolf Brink (Asperitas), John
Fernandes (Facebook), Sean Sivapan (Intel); Rob Bunker (Schneider); Isabel Rao (CoolIT); Raul Alvarez (Submer); Rob Sty; Alex
McManus (GRC); Greg Towsley (Ebara), Eugene Maritz

OPEN POSSIBILITIES.
OCP Advanced Cooling Facilities

Data Center Facility

Sub-Projects:
- Modular Data Center
- *Advanced Cooling Facilities - Incubation*
- OCP Ready™ Facility Recognition Program
- Operation Technology Security - Incubation

Rack & Power

Sub-Projects:
- ACS Immersion
- ACS Cold Plate
- ACS Door Heat Exchanger

Advanced Cooling Facilities
the Bridge between DCF and ACS
#DontFearLiquidCooling
#PlanForIT

OPEN POSSIBILITIES.
Liquid Distribution Guidance & Reference Designs

Design Considerations
Case 1 - Addition to existing Facility Water System (Chiller Plant Loop)
Case 2 - Addition to Elevated Temperature Loop (no Chiller Plant)

Beyond Design - Procedures & Commissioning Impact on Operational Success

Virtual Design & Construction Delivery of Liquid Cooled ITE in Life-Cycle

Appendix A. Recommendations for BIM definition and detail content of Vendor solutions
Appendix B. Cooling Distribution Systems
Appendix C: Keys to Success in Data Center Liquid Loops
Appendix D: Risk Analysis (FMEA)
Appendix E. Closed Loop Cleaning Best Practices
Best Practices & Reference Designs

Concept Design 1 - Coldplate Addition w/CDU

Concept Design 1A Existing FWS: Rear Door HX, No CDU

Concept Design 2 - Elevated temperature loop Immersion Cooling Example with No Chiller Plant
Where Will You Run The Pipes?

- Raised Floor
- “Step” Floor, integrated CDU
- Above Floor

OPEN POSSIBILITIES.
Pipe Sizing Factors – Flow, KW, ΔT

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>ASHRAE 90.1-2019 Table 6.5.4.6</th>
<th>Equiv Velocity</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DIN</td>
<td>in</td>
<td>l/s</td>
<td>GPM</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
<td>4.95</td>
<td>78</td>
</tr>
<tr>
<td>65</td>
<td>2-1/2</td>
<td>6.94</td>
<td>110</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>10.73</td>
<td>170</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>20.19</td>
<td>320</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
<td>42.90</td>
<td>680</td>
</tr>
<tr>
<td>200</td>
<td>8</td>
<td>69.40</td>
<td>1100</td>
</tr>
<tr>
<td>250</td>
<td>10</td>
<td>100.94</td>
<td>1600</td>
</tr>
<tr>
<td>300</td>
<td>12</td>
<td>145.11</td>
<td>2300</td>
</tr>
</tbody>
</table>

Based on flow rates per ASHRAE 90.1-2019 Table 6.5.4.6 for Variable Flow

* - Values are based on standard weight carbon steel pipe dimensions, ASTM A53

- Represents typical design dT for chiller-based systems
- Represents dT lower than typical design/operation of FWS systems
Prefab VDC Vision:
Concept to Dwg to BOM to Prefab Kit to Installation

Architecture / SPEC's / Basic piping design

Ref Design + MEP Review + BIM Content

Lean Install

Bill of Materials, Pipe Lengths

Coordination in an early stage with warehousing and allocation of the material
Forms of Prefab

- **Prefab “kits”**
 - precision design, self aligning
 - minimal labor hours
 - Lean construction

- **Spool Pieces**
 - precision design, self aligning
 - Valves installed
 - simplified assembly, minimize labor

- **Catalog Items**
 - Single SKU for complex assemblies
 - Reduce on site labor hours & issues

- **Modular Skids**
 - Complete pump rooms, optimized design
 - Minimal on site labor

BIM Content = Key to Prefab Success
BIM Content: Vendor Requirement

Key Requirements to support Reference Designs

1. **Revit RFA format**

2. **Specific geometry modeled (including clearances)**, 500KB-700KB target size

3. **Connections for piping, power and drain (if applicable) modeled in dimensionally accurate locations and sizes.**

4. **Electrical connections should have voltage, phase, kVA and load classification parameters as a minimum.**

Additional input of design and lifecycle value

1. Water-side pressure drops and flow rates identified.
2. Telecomm connectors identified and specified
3. End user data recommendation:
4. All models should be hosted to the floor on which they are placed in the model.
5. **Designers/engineer “nice to have”**: Weight, Floor Load (PSF)
 1. Maximums: fluid temperatures, pressure drops, flow rates, working pressures
Risk….Science Vs Mythology

Liquid Cooling Mythology ….. VS Liquid Cooling Reliability Science –

FMEA – Failure Mode & Effects Analysis
MTBF – Mean Time Between Failure
MOPs, SOPs

Failures are famous …..Reliability is unnoticed

OPEN POSSIBILITIES.
Failure Mode Effect Analysis

Detect Failure Mode
Assign Risk Factors
- Severity
- Probability
- Detection

Mitigate Risk Factors
- Optimize Design
- Increase MTBF
- Improve Detection
- Procedures
- Isolation strategy

(Minimize)
Risk Priority Number
\[R = S \times P \times D \]

Mitigate Risk Factors
- Optimize Design – Location, reduction of risk points
- Increase MTBF – Require high MTBF of critical components
- Improve Detection – Visual, leak detection
- Procedures – MOPs, SOPs, EOPs
- Isolation Strategy – Isolation valves, redundancy

#DontFearLiquidCooling - #PlanForIT

OPEN POSSIBILITIES.

ADVANCED COOLING FACILITIES

OPEN POSSIBILITIES.
Mission Critical Systems: Apply SUBSAFE to Data Centers

Design - Holistic solution, to include temperatures, pressures Flexibility and movement.

Quality Control - Traceable to date, location of manufacture and associated quality tests

Installation Performance – leak-proof, maintenance free for 20+ years based on auditable verification of proper installation + pressure test.

Leak Detection & Protection and maintenance plan recommended for components or connections not meeting the mission critical guidance above with 20+ year performance expectation.
Good Design is Key….But Just Part of Success
SLA Considerations

ASHRAE TC 9.9 Table 3.1 2021 Thermal Guidelines for Liquid Cooling

<table>
<thead>
<tr>
<th>Liquid Cooling Class</th>
<th>Typical Infrastructure Design</th>
<th>Facility Water Supply Temperature, °C (°F)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>W17 W27</td>
<td>Chiller/cooling tower</td>
<td>17 (62.6)</td>
</tr>
<tr>
<td>W32 W40</td>
<td>Cooling tower</td>
<td>32 (89.6)</td>
</tr>
<tr>
<td>W45 W+</td>
<td>Cooling tower</td>
<td>45 (113)</td>
</tr>
</tbody>
</table>

Table 2: Dewpoint Limits Per ASHRAE

<table>
<thead>
<tr>
<th>ASHRAE Class</th>
<th>Max Inlet Temp °C</th>
<th>Max Dewpoint Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1-A4</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Allowable Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>A2</td>
<td>35</td>
<td>21</td>
</tr>
<tr>
<td>A3</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>A4</td>
<td>45</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>35</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>28</td>
</tr>
</tbody>
</table>

ASHRAE TC 9.9 – Stay 2 degrees C above dewpoint in ITE space
Call to Action

• Get involved in OCP Advanced Cooling Facility Sub-Project:

 • Weekly OCP ACF calls Tuesdays 1100 ET (UTC-4)
 https://global.gotomeeting.com/join/952298085
 • https://www.opencompute.org/wiki/Data_Center_Facility/ACF-Advanced_Cooling_Facilities

• Mail List: https://ocp-all.groups.io/g/ocp-acf
Open Discussion