

FUTURE **TECHNOLOGIES** SYMPOSIUM

OCP Global Summit

November 8, 2021 | San Jose, CA

Al Co-Design Opportunities in OCP

Matt Bergeron Yang Seok Ki Matt Short

Compute Spend is Changing Dramatically

Revenue (\$m)

- Let's start by setting the stage
 - Why is this so important?
 - Why do I need to take action?
- If "AI" was a country
 - Today top #100, between Serbia and Lithuania
 - By 2025 top #50, comparable to Greece
- By 2025, the majority of data center compute spend will be for AI
- Great! But...why is there is always a but?

© 2021 Omdia

Percentage of data center server

Data Drivers - AI and ML Workflows

- How we segment the problem tells us a lot
 - Spans 28 Major industries
 - 14 Major Applications
 - 208 Use case / technology types
 - 5 major regions
 - 1000+ vendors (HW, SW, OEM, Sis, SPs, etc)
- The need for Industry catalysts
 - APIs, Digital Twins, Tools of all sorts
 - Most important Industry Collaboration
 - OCP is here to play our part!

Al Resource Requirements & Trend

• AI models grow faster than technology advances

Inference System

Challenges

Al Processing Unit							
Scalar Unit	Vector Unit	Te	Tensor Unit				
SRAM							
Memory Processing Unit			Fabric Unit				
High Bandwidth DR	AM Low Latency	DRAM					

Fabric					
Capacity Memory	Fast Storage				

Potentials

AI/Watt	High throughput				
 AI accelerator Analog/Photonic c FTS presentation: 	hip Accelerating DLRM on an OCP M.2 Accelerator				
Capacity	Memory sufficient for huge models				
 Tiered memory, memory pooling SSD FTI SDM Work Stream 					
Bandwidth	High effective bandwidth				
High bandwidth IOConfigurable network					

Latency Real-time SLA (Service Level Agreement)

- High IOPS SSD with short tail latency
- **FTS poster**: Can NAND Flash SSDs Meet the Needs of Recommendation Models for Inference?

Inference HW and SW Architecture

AI Processing Unit						
Scalar Unit		Vector Unit	Tensor Unit			
SRAM						
Memory Processing Unit			Fabric Unit			
High Bandwidth DRAM Low Latency DRAM						

Training Systems

- Compute elements
- IO networks
- Storage types
- Inter-node networks

Inter-node Networks

Ethernet

HPC,

Collaboration

- Modelling
 - Simulation
 - Abstraction (Glow)
- Democratization
 - Open vendor IO bus
 - Physical partitioning

Actions

- Contributors
- Software
- University collaboration
- Industry collaboration
- Afternoon session

Formal OCP project group in 2022

Goal

DCP FUTURE TECHNOLOGIES SYMPOSIUM

2021 OCP Global Summit | November 8, 2021, San Jose, CA