OPEN POSSIBILITIES.

SmartFTL SSDs

STORAGE

SmartFTL SSDs

Chris Sabol, SSD Architect, Google Smriti Desai, Storage Engineering Director, Google

Storage@Google

• Growing exponentially

• **Breadth** of use cases

Use HDD & SSD based storage systems

Today's focus **⇒ SSDs at Google**

Google's path to SmartFTL SSD

- History of SSDs at Google
- What is SmartFTL
 - How it works
 - The benefits
- Call to Action

Google SSDs over 11 years

1	Beginning: Simple PCIe SSD	 Major use case: memory offload for Search. Think Google Instant Search. Host software stack did pretty much everything (FTL, mapping table)
2	Evolution of Internal SSD	 Improvements were made to incrementally offload functionality to the drives
3	3rd Party SSD	 Benefit from industry optimizations We see a gap on GC efficiency; Close this gap through SmartFTL

Google SSD Trends

- Host Offload
 - Kernel Bypass
 - FTL

- Growing NAND Complexity
 - ECC
 - 3D NAND
 - Bifurcation

STORAGE

- Performance continues to scale
 - Plane Growth
 - Independent Plane Read
 - Program Suspend

Current industry architecture half works

Industry

- RAID across flash dies for error reduction
- Legacy HDD commands
- Single workload optimized

Google Use Case

- No data position control
- No application hints
- Highly parallel workloads

Result: Higher WAF

Cluster Filesystem

- Need low error rates
- Standard interface needed
- Lower parallelism

Local SSD

Optimizing GC – Saves Bytes!

- Write Amplification Factor (WAF) is a function of workload and flash over provisioning (OP).
 - WAF is a measure of the extra writes you need to do for GC purposes.
 - With a WAF of 2.5 for every 1MB of write requested from the drive, 2.5MB must be written to flash; since extra writes are GC, the drive must do 1.5MB of extra reads as well.

Example: with random 4KiB writes, ~28% OP, and greedy GC algorithm, can expect WAF of ~2.5			
WAF Reduction from 2.5 to 1.25 can	Quantified Benefit		
Reduce OP / Higher Usable Capacity	18% Capex Savings		
Enable 2x drive size with the same application write density	7% Capex / 15% Opex Savings		
Double effective drive lifetime	0-35% Capex Savings		
Enable 2x application write rate	Performance		

Introducing SmartFTL – Google's Solution

SmartFTL Goals

Baseline SSD

Drive Responsibility

- Flash management
- Write data positioning
- GC decisions

SmartFTL SSD

Drive Responsibility

• Flash management

Application Responsibility

- Write data positioning
- GC decisions
- Align control with information/knowledge and contain complexity at its source
- NAND management complexity owned by drive
- Layout/GC complexity comes from workload; owed by application

OPEN POSSIBILITI<mark>ES</mark>.

STORAGE

Standard Architecture

SmartFTL Architecture

What is SmartFTL?

- Positioning IO Directive extension to NVMe
- Gives host control of data position down to the die level & access to multiple append points per die
- Data is still addressed by LBA; there are no LBA restrictions.
- Host GC Mode: Optional additional control of GC selection, targeting, & timing.
- Two new modes of operation
- Pure positioning mode
- Host managed GC mode
- Can coexist existing NVMe mode of operation

SmartFTL Performance Profile

- The application can tradeoff read/write performance and WAF.
- Pure random 32MB write WAF does not capture benefit of 64-128x stream isolation

SmartFTL – Under the Hood

SmartFTL Positioning Mode Life of a Write

- Positioning mode is hugely valuable by itself.
- If you are going to get to WAF 1.0, you need to do it with optimal initial positioning.

SmartFTL Host GC Mode Life of a Write

- GC mode the host keep its own map
- Keeps drive from doing GC copies by managing block occupancy
- Allows full flexibility at host of host CPU and DRAM

NOVEMBER 9-10, 2021

RAID Layout not Compatible

- Drives typically have something like a RAID5 stripe across 64 dies with a 8KiB 32 KiB stride
- Writes must append to the stripe; no ability to pick block.
- So if you deallocate / overwrite 1MiB, instead of freeing up 5% of a block, you free up 0.08% of 64 blocks.
- This matters a lot for objects in the 512KiB to 1GiB size range.
- Correlated lifetimes at the block level are critical for low WAF

Effective	Effective GC Block Size		
RAID	1.1GiB - 9 GiB		
No-RAID	18MiB - 144MiB		

SmartFTL is useful if your workload...

- Has erasure coding above the drive layer
- Data deletion is correlated at sizes between 16KiB and 1GiB
- 64KiB to 100MiB single object read performance doesn't have to achieve full drive read throughput
- For example: a cluster filesystem workload

Call to Action

Standardize & Enable SmartFTL adoption

- Co-developing w/ SSD vendors Samsung, Kioxia & Intel
- Standardize SmartFTL interface through NVMe
- Open source a smartftl library to provide useful application hooks / abstractions

Engage in OCP Storage workgroup & SSD specs

We hope other SSD users will find this **valuable**, believe it addresses a **common challenge**, and would love to hear your **feedback**.

Open Discussion

