OPEN POSSIBILITIES.

OMI, The Path to High Bandwidth, High Capacity Near Memory

SERVER

...

PERFORMANC

HIGH

NOVEMBER 9-10, 2021

Server Track

OMI, The Path to High Bandwidth, High Capacity Near Memory

Tom Coughlin, Coughlin Associates, <u>https://tomcoughlin.com</u> Jim Handy, Objective Analysis, <u>https://objective-analysis.com</u>

Preface: Near Memory vs. Far Memory

SERVER

HIGH PERFORMANCE COMPUTING

Preface: Near Memory vs. Far Memory

OPEN POSSIBILITIES.

SERVER

HIGH PERFORMANCE COMPUTING

Outline

- More Cores Need More Near Memory Bandwidth
- Today's Problems Need Larger and Faster Near Memories
- Three Alternatives DDR, HBM, & OMI
- What Is a DDIMM?
- Supporting a Mix of Near Memories
- Conclusions
 OPEN POSSIBILITIES.

Processor Trends Drive Near Memory Demands

Processor Trends Drive Near Memory Demands

Increasing Near Memory Bandwidth

- Improve the memory interface
 - DDR, DDR2, DDR3, DDR4, DDR5
- Increase the bus clock speed
 - 1600, 1866, 2133, 2400, 2666, 2933, 3200
 - But latency doesn't change as clock speed increases
 - Higher clock speeds reduce DIMMs per channel
- Add Memory Channels

OPEN POSSIBILITIES.

More Memory Channels Means More Processor Die Cost & Power

OPEN POSSIBILITIES.

Each LRDIMM channel requires 152 processor pins 72 data bits + 18 address bits + 36 strobes + 26 command/other bits 6 Channels = 912 pins 8 Channels = 1,216 pins The most expensive real estate in the system Fast I/O is a power hog Capacitance is the culprit!

Three Near Memory Options

DDR4 Mainstream & inexpensive HBM2E Costly, but fast 1,000-bit bus! OMI

Introduces SerDes into data path Supports high bandwidth and large memory capacities

OMI & IBM's POWER10 CPU

SERVER

OPEN POSSIBILITIES.

POWER10 Stats

Sixteen OMI channels

256 GB capacity per channel

1TB/s total memory bandwidth (read + write)

64GB/s per OMI channel

2.2mm² die area per channel 29.6GB/s/mm²

Nearly matches HBM

OPEN POSSIBILITIES.

OMI DDIMM

Serial differential signaling ¼ the pins of DDR HBM-like bandwidth

Moves DRAM signaling away from main board, onto DDIMM

Reduces processor's I/O power

Low latency penalty <4ns

Requires a controller

Replaces LRDIMM buffers

Processor no longer tied to one interface (DDR4) or one memory type (DRAM)

30mm² die area

Can do on-DIMM processing (ECC, encryption...)

Near HBM Bandwidth at >DDR Capacities

VOVEMBER 9-10, 2021

Conclusions

Near Memory needs more bandwidth

Near Memory needs larger capacities

More Memory→DDR, Faster Speeds→HBM, Both→OMI

Near-HBM speeds at larger-than-DDR capacities

OMI can support a mix of Near Memory types

Call to Action

Visit the OMI Booth on the OCP Exhibit Floor

Consider adopting OMI as your near memory interface during your next processor design to get a low latency, high bandwidth and high

capacity solution

OCP GLOBAL SUMMIT 2021

EXPO FLOORPLAN - BOOTH SELECTION

OPEN POSSIBILITIES.

FNtech

References

CXL Consortium, Introduction to Compute Express Link (CXL), 2019 Hot

Interconnects.

Patrick Knebel, et. Al, Gen-Z Chipset for Exascale Fabrics, 2020 Hot Interconnects.

Mazyar Razzaz, DDR Basics, Register Configurations & Pitfalls, Freescale Technology Forum, July 2009.

Low Power Double Data Rate 4 (LPDDR4), JESD209-4D, JEDEC, 6/2021. High Bandwidth Memory (HBM) DRAM, JESD235D, JEDEC, 3/2021.

Karl Rupp - <u>https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-</u>data/

https://github.com/karlrupp/microprocessor-trend-data/blob/master/LICENSE.txt

W. Starke and B. Thompto, IBM's POWER10 Processor, 2020 Hot Interconnects.

T. Coughlin and J. Handy, <u>The Future of Low Latency Memory</u>, White Paper, <u>https://Objective-Analysis.com/reports/#Emerging</u>, July 2021.

SAP Standard Application Benchmarks, <u>https://www.sap.com/dmc/exp/2018-benchmark-directory/#/sd</u>

HIGH PERFORMANCE COMPUTING

NOVEMBER 9-10, 2021