OPEN POSSIBILITIES.

Material Compatibility Workstream for Immersion Cooling – Advance Cooling Solutions Update

R&P (Rack & Power)

Material Compatibility Workstream for Immersion Cooling – Advance Cooling Solutions Update

John Bean, Chief Technology Officer, Green Revolution Cooling Punith Shivaprasad, Product Application Specialist, Shell Immersion Cooling Fluids

OPEN POSSIBILITIES.

OCP Material Compatibility Focus Group

Rosters				
Punith Shivaprasad	Shell			
John Bean	GRC			
Sayan Sengupta	M&I Materials			
Peter Cooper	Submer			
Kevin Wirtz	Cargill			
Brian	Solvay			
Phil Diffley	Liquid Stack			
Volker Null	Shell			
Stephen Pignato	3M			
Mustafa Kadhim	lceotope			
Gustavo Pottker	Chemours			
Kai Zhou	UL			

Current Activities /Focus List:

• Compatibility matrix snapshot

- ADVANCED COOLING SOLUTIONS
- Material compatibility matrix completion
- Criteria for material compatibility (one approach proposed)
- Test methods for aging test for single phase fluids
- Required liquid specifications
- Minimum dielectric requirements for fluid
- Signal Integrity specifications

open possibilit<mark>ies</mark>.

Compatibility Matrix Snapshot (WIP)

Material list is growing, process underway evaluate which materials may be removed for now

		Draft - OCP Material Compatibility (Chart		
Application	Compatible Materials	Esters (Synthetic)		Sythetic Hydrocarbons (GTL)	
	Nitrile Rubber (>35% Nitrile Content)	Acceptable	Acceptable	Weight increases, (ΔW<5% when 1 month duration, and ΔW<10% when 6 months duration.)	
	Fluorocarbon Rubber (Viton/fluoroelastomers)	Acceptable	Acceptable	Weight and Volume increase(both change are less than 5%)	
	Polyurethane Rubber	Acceptable	Acceptable	Weight and Volume increase(both change are less than 5%)	_
	PTFE (Teflon)	Acceptable	Acceptable	Weight and Volume increase(both change are less than 5%), almost no change after test.	_
	Nylon	Acceptable	Acceptable	This type is not tested, read across.	
Seals and 'O' Rings / Rubbers	EPDM	Marginally Acceptable	Unacceptable	Weight increase(ΔW is about 50% when 2 weeks duration, ΔW is about 60% when 1 month duration, ΔW is about 70% when 3 months duration, then EPDM is almost disoved in fluid when 6 months duration.	

ADVANCED COOLING SOLUTIONS

Google Sheet Link

open possibiliti<mark>es</mark>.

Material Compatibility Matrix Completion

Esters Synthetic	HC Synthetic GTL	HC Synthetic	PFPE	Esters Natural	PFCs	ADVANCED COOLING SOLUTIONS
65.7%	82.9%	63.8%	48.6%	72.4%	88.6%	

Note -

PFPE - Perfluoronated Polyether

PFC – Perfluorocarbons

Group Discussion

- Required liquid specifications
- Minimum dielectric requirements

Link to 4.1 and 4.2

OPEN POSSIBILITI<mark>ES</mark>.

Material Compatibility Criteria Selection

- Recommended proposed criteria (%) is related to testing single and two-phase dielectric fluids
- Material compatibility criteria for each of the IT components tested and inputs were received from fluid suppliers and IT components manufacturers
- One approach was selected by the committee as criteria for material compatibility, and it is based on the application independent
- In Appendix of the OCP guidance document, there will be listing of a table consisting of following physical properties such as:

(a) Volume Change (b) Mass Change (c) Shore Hardness for Polymers (d) Color for Fluid (e) Breakdown Voltage (f) Dielectric Dissipation Factor (DDF) (g) Acid Value (h) Color for Material

OPEN POSSIBILITI<mark>ES</mark>.

ADVANCED COOLING SOLUTIONS

Criteria for Material Compatibility Selection (Application Independent)

Fluid and Material Tested								
ΔV%	Δm%	∆ShoreD%	∆Color(material)	ΔBDV	ΔDDF	Acid Value	∆Color(fluid)	
5								
	ΔV%			ΔV% Δm% ΔShoreD% ΔColor(material)	ΔW% Δm% ΔShoreD% ΔColor(material) ΔBDV Δ	ΔV% Δm% ΔShoreD% ΔColor(material) ΔBDV ΔDDF Δ	ΔV% Δm% ΔShoreD% ΔColor(material) ΔBDV ΔDDF Acid Value Δ <td< td=""><td>ΔV% Δm% ΔShoreD% ΔColor(material) ΔBDV ΔDDF Acid Value ΔColor(fluid) </td></td<>	ΔV% Δm% ΔShoreD% ΔColor(material) ΔBDV ΔDDF Acid Value ΔColor(fluid)

Material compatibility specification limits set as (a) Acceptable (<10%), (b) Case-by-case basis (10%-20%) and (c) Unacceptable (>20%) for all the parameters (including for fluids and materials).

Test methods for accelerated aging test method for single phase fluids

Value

80

336

0.8

Color, breakdown voltage, DDF, Acid value

Uneven shape materials – 10% maximum

Glass, fitted with aluminum foil cover

Oven, forced draft, adjustable to 80°C ± 1°C

Even shape materials – 2% and

Dimensions, weight, color, Shore D hardness

ADVANCED COOLING SOLUTIONS

*Unless decomposition temperature of material is <80°C, then perform test at lower temperature

Parameter

Duration(h)

rates(%)

Temperature (°C)

Fluid volume (L)

(pre-and post-test)

(pre-and post-test)

Sample container

Fluid properties to measure

Sample properties to measure

Sample-handling apparatus

Sample surface area (cm²) – Fluid loading

Required Liquid Specifications

Test method(s)	Format	
ASTM D 1816	kV/mm	
(IEC 60156)	(kV, est kV/mm)	
*This method is to be modified with the given frequencies and temperatures *The high temperature test can be lowered in line with evaporation temperatures of 2-phase fluids	@# GHz and #°C	ADVANCED COOLING SOLUTIONS
*In line with the adjusted test parameters for dielectric constant	@# GHz and #°C	
ASTM D 92 / ISO 2592	°C	
ASTM D 92 / 2592	°C	
DIN 51794/ ASTM E659	°C	
ASTM D 97 / ISO 3016	°C	
n/a	{TDS spec}	
ASTM D 156 / ISO 2211	{MSDS spec}	
ISO 14596	ppm	
ASTM E 1269	kJ/kg*K @ 40°C	
ASTM D 7896	W/m*K @40°C	
ISO 12185	kg/m3 @ #°C	
ASTM D 1903	/°C	
	ASTM D 1816 (IEC 60156) *This method is to be modified with the given frequencies and temperatures *The high temperature test can be lowered in line with evaporation temperatures of 2-phase fluids *In line with the adjusted test parameters for dielectric constant ASTM D 92 / ISO 2592 ASTM D 92 / 2592 DIN 51794/ ASTM E659 ASTM D 97 / ISO 3016 n/a ASTM D 156 / ISO 2211 ISO 14596 ASTM E 1269 ASTM D 7896 ISO 12185	ASTM D 1816kV/mm(IEC 60156)(kV, est kV/mm)*This method is to be modified with the given frequencies and temperatures *The high temperature test can be lowered in line with evaporation temperatures of 2-phase fluids# GHz and #°C*In line with the adjusted test parameters for dielectric constant@# GHz and #°CASTM D 92 / ISO 2592°CASTM D 92 / 2592°CDIN 51794/ ASTM E659°CASTM D 97 / ISO 3016°Cn/a{TDS spec}ASTM D 156 / ISO 2211{MSDS spec}ISO 14596ppmASTM D 7896W/m*K @40°CISO 12185kg/m3 @ #°C

Required Liquid Specifications Contd.,

Specification	Test method(s)	Format
Kinematic viscosity curve (or list following)		Graph
0°C		mm ² /s (cSt)
20°C	ASTM D7042	mm ² /s (cSt)
40°C		mm ² /s (cSt)
60°C		mm ² /s (cSt)
NSF Nonfood Compounds Certification	NSF Certificate	Yes/No
Acidity	IEC 62021-2 / IEC 62021-1	mgKOH/g
Hazard statements	GHS Classification	SDS{MSDS spec}
STOT - single exposure	Safety Data Sheet	SDS{MSDS spec}
STOT - repeated exposure	Safety Data Sheet	SDS{MSDS spec}
Global warming potential (GWP)	IPCC 2007	NA
Biodegradability	OECD 301	{MSDS spec}
Vapour Pressure at 60°C	ASTM D2879	mbar
Maximum moisture content for dielectric breakdown	(100% Water saturation point, ASTM D1533-20)	ppm
Oxidation Stability	IEC 61125	Values per method
Ozone Depletion Potential	Reference	Yes/No
OPEN POSSIBILIT	TES.	

NOVEMBER 9-10, 2021

CF

Minimum Dielectric Requirements for Single and Two-Phase Fluids

Property	Unused fluid minimum requirements	Lifetime fluid minimum requirements	ADVANCED COOLING
Dielectric Strength	>15 kV	>15 kV	SOLUTIONS
Resistivity	>2 GΩm	<0.2 GΩm	
Flash Point (COC)	>150 °C	>150 °C	
Auto Ignition Point	>250 °C	>250 °C	
Sulphur Content	<10 ppm		
Acidity:			
hydrocarbons	≤0.01 mg KOH/g		
natural esters	≤0.06 mg KOH/g		
synthetic esters	≤0.03 mg KOH/g		
fluorocarbons?	NA		
Odor (unsealed solutions only)	≤Slight	≤Slight	GLOBAL
OPEN POSSIBILITIE	S.	(/'	SUMMIT NOVEMBER 9-10, 2021

Signal Integrity (SI) Specifications

Recommended following parameters that impact SI should be reported:

1. Dielectric Constant (Relative Permittivity) at 20 GHz and 40 GHz measured at 20°C and 70°C test temperatures respectively Note - High temperature test can be lowered in line with evaporation temperatures of two-phase fluids

2. Loss tangent - In line with the test parameters set for dielectric constant

ADVANCED

COOLING SOLUTIONS

Call to Action

- How to get involved in the Project/Sub-Project Community
 You can find the wiki page here for more details: <u>https://www.opencompute.org/wiki/Rack_%26_Power/Advanced_Cooling_Solutions</u> <u>Immersion_Cooling</u>
- Where to find additional information (URL links)

Please subscribe to the mailing list here: <u>http://lists.opencompute.org/mailman/listinfo/opencompute-acsimmersion</u>

Please reach out to us - <u>John.Bean@ocproject.net;</u> Punith.Shivaprasad@ocproject.net

OPEN POSSIBILITIES.

Thank you!

Open Discussion

