

Hardware Management Project

### OCP's Rack Manager Controller subproject (OpenRMC)

John Leung, Principle Engineer Intel Corporation

Alfie Lew, Sr. Solutions Architect Inspur







### Motivation for OpenRMC

- 1. System Firmware (BIOS)
  - OCP System Firmware project
- 2. BMC Firmware
  - OpenBMC governed by Linux Foundation
- 3. Rack Manager Software/Firmware
  - OCP OpenRMC
  - With OpenBMC, the industry unified the various repositories in 2018
  - With rack manager, OCP will provide a source repository and prevent splintering



## The rack manager controller can be hosted in various locations

![](_page_3_Figure_1.jpeg)

![](_page_3_Picture_3.jpeg)

### The OpenRMC Charter

## Specify the Rack Manager Controller service architecture

- Northbound interface to datacenter manager (spec)
- Southbound interface to OCP platforms in the rack (requirements)

#### **Deliver a Rack Manager implementation**

• Available as open source

#### **Outside of charter**

• The hardware designs will be within the charter of the other OCP platform projects

![](_page_4_Figure_8.jpeg)

![](_page_4_Picture_9.jpeg)

### Logistics

- OpenRMC is a subproject of the Hardware Management project
  - Interim co-chairs: John Leung (Intel) and Alfie Lew (Inspur)
  - <u>Wiki</u>
- Participation
  - ARM, Microsoft, Facebook, Huawei, Inspur, Nokia, Intel, etc

![](_page_5_Picture_6.jpeg)

### Status

#### **Regular meetings since Nov 2018**

- Facebook, Inspur and Microsoft have presented their RMC architectures
- Comparison of interfaces
- <u>https://drive.google.com/file/d/1AU8NCCL-kYstK2iChD88hxbSAxp5jCLK</u>

#### Initial draft of Northbound API (Redfish)

• <u>https://drive.google.com/file/d/1CyGBKLSAtdIuUbwtF5FR71qc77e8-KRD</u>

Open. Together.

#### Microsoft submitted their Olympus RMC source

- The submittal will be updated with latest source changes
- <u>https://github.com/opencomputeproject/Rack-Manager</u>

![](_page_6_Picture_10.jpeg)

### Northbound API Specification

#### **Redfish-based Interfaces are specified by**

- A set of URI to the resources
- Contents of JSON document (i.e. resource properties)
- Behavior of the interaction via the API

#### The Northbound API shall be specified with

• An OCP Profile (resources and resource properties)

Open. Together.

• An interface behavior specification

![](_page_7_Picture_8.jpeg)

### **Redfish Resources from Service Root**

/redfish/v1 (Service Root)

#### **Top level resources**

- Each top level resource may have subordinate resources
- Each resource is represented as a JSON document (name-value pairs)

| Resource Path (URI)          | OpenRMC | <b>RSD RMM</b> | Olympus |
|------------------------------|---------|----------------|---------|
| /redfish/v1 (Service Root)   | x       | ×              | ×       |
| /redfish/v1/Chassis          | x       | ×              | ×       |
| /redfish/v1/Managers         | x       | ×              | ×       |
| /redfish/v1/Systems          | ?       |                | ×       |
| /redfish/v1/AccountService   |         |                | ×       |
| /redfish/v1/EventService     | x       | ×              |         |
| /redfish/v1/TaskService      | x       | ×              |         |
| /redfish/v1/TelemetryService | ?       | ×              |         |
| /redfish/v1/UpdateService    |         | ×              |         |

![](_page_8_Figure_5.jpeg)

AccountService/ManagerAccounts/{id}

![](_page_8_Picture_8.jpeg)

### **Rack Manager Scope Vectors**

- Manages a single rack or multiple racks?
- What rack-level manageability capabilities are supported?
  - Reboot, power usage, power limit, temperature profile, firmware update?
- How do RMC Clients and RMC Services interact?
  - During primary operational manageability or during debug?

Open. Together.

• Via RMC abstraction or directly accessing server?

![](_page_9_Picture_7.jpeg)

# What rack-level manageability capabilities are supported?

#### Rack Level (northbound)

- Inventory
- Power-on/Reboot/Shutdown
- Power usage
- Power limit
- Temperature (profile?)
- Update firmware on all servers
- Status/Health

Drives the southbound Interface requirements

#### Node Level (southbound)

- Inventory
- Power-on/Reboot/Shutdown
- Power usage
- Power limit
- Temperature (profile?)
- Update firmware on all devices
- Status/Health

The southbound Redfish interface should aligned with the OCP platform profiles

![](_page_10_Picture_20.jpeg)

### How do RMC Clients and RMC Services interact?

Two extrema exists for the interaction models

- 1. The RMC Client manages the server, via the RMC abstraction model
  - Does not see the underlying complexity
- 2. Upon failure, the RMC Client accesses the server directly

![](_page_11_Figure_5.jpeg)

- 1. The RMC Client manages the server, directly
- 2. Upon failure, the RMC Client accesses the RMC Service, to reboot or diagnose the server

![](_page_11_Picture_8.jpeg)

### Call to Action

### Participate in the OpenRMC project

- Attend the OpenRMC meetings <u>Wiki</u><sup>1</sup>
- Join the discussion <u>mail-list<sup>2</sup></u>
- Help priorities the rack-level manageability needs
- Help develop and test the OpenRMC implementation

<sup>1</sup>https://www.opencompute.org/wiki/Hardware\_Management/Open\_RMC <sup>2</sup>https://ocp-all.groups.io/g/OpenRMC

![](_page_13_Picture_0.jpeg)

### Open. Together.

OCP Global Summit | March 14–15, 2019

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)