
Enabling RAS on Xeon OCP Platforms Using
Intel FSP and Coreboot

Enabling RAS on Xeon OCP Platforms
Using Intel FSP and Coreboot

Ruth Li, Software Architect, Intel

Agenda
§ This talk is part of Intel® FSP exploration to support diversified boot

frameworks along with Open system firmware initiative
§ The topic depicted technical solution to enable Runtime RAS service

under Coreboot framework via FSP API interface.

• Open System Firmware and FSP Overview
• Problem in Silicon specific SMM/Runtime modules working with FSP
• Solution in Runtime RAS support with FSP
• Demo of ‘RAS Enabling in FSP with Coreboot’

Open System Firmware and FSP Overview

Cache
Setup CPU

Mode
setup

Memory
Init

SoC/Chip
set Init

Silicon
specific
SW IPs

Socket
Topolog

y

Silicon
specific
Runtime

BSP/AP
Init

Silicon IP Source code Collateral

FSP
Binary

UEFI

Coreboot

Slim
Bootloader

Silicon RC
encapsulated
into FSP Binary

FSP-T

FSP-M

FSP-S

FSP Binary
Ref Code Binary PEIM

TempRamInit

FspMemoryInit

TempRamExit

FspSiliconInit

NotifyPhase

HOB

EDKII:
https://github.com/tianocore/edk2

EDKII Minimum Platform Spec:
https://edk2-docs.gitbook.io/edk-ii-minimum-
platform-specification

EDKII MinPlatform/OpenBoard:
https://github.com/tianocore/edk2-
platforms/tree/master/Platform/Intel/MinPlatformPk
g

OPEN SOURCE EDKII

• FSP(Firmware Support Package)
https://www.intel.com/content/www/us/en/intellig
ent-systems/intel-firmware-support-
package/intel-fsp-overview.html

ü Latest spec: FSP 2.3
ü Supporting UEFI/Coreboot/Slim

Bootloader

• Microcode patch, Security ACM
• Mgmt.: SPS FW, Ignition FW

REDISTRIBUTED FIRMWARE BINARY

https://github.com/tianocore/edk2
https://edk2-docs.gitbook.io/edk-ii-minimum-platform-specification
https://github.com/tianocore/edk2-platforms/tree/master/Platform/Intel/MinPlatformPkg
https://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html

In UEFI Flavor, when working with Intel® FSP
§ CPU, Mem, Chipset initialization are executed in PEI phase, enclosed in Intel® FSP
§ Silicon Specific SMM/Runtime modules are implemented in Close-source, Dispatched in DXE phase

In non-UEFI flavor, if integrating with bootloaders (e.g., coreboot, Slimboot):
§ CPU, Mem, Chipset initialization are supported with Intel® FSP Binary
§ UEFI DXE/SMM module CAN’T be Seamlessly integrated.

Problem/Issue
§ No Unified Redistributable Silicon SMM/Runtime modules to support diversified bootloader for Open System

Firmware Solution

Problem in Silicon SMM/Runtime IP working with FSP

SEC
• Cpu setup (ucode)
• CAR setup(FSP-T)
• Setup stack

PEI
• Pei-Core in BootFV/FSP-M
• Dispatch PEIM in BootFV
• Dispatch Memory Init(FSP-M)
• Dispatch PEIM (FSP-S)

DXE

Dispatcher
BDS

Boot
Manager

UEFI Shell

TSL

OS Loader

UEFIReset Vector

Power-on

Operation
System

SMM Intrinsic
Service

SMM
handlers

DXE/SMM
DriversDXE/SMM

Drivers

6

Reliability, Availability and Serviceability(RAS)

Hardware Platform
(including Processor, Memory, and I/O)

SMM Execution Environment

RAS
handler X……

Operating System/Hypervisor

MMIO
Read/Write

SMI

CMCI
MCE

Software
SMI

Read
Enhanced
Error Log

ACPI
DSM

OSPM Kernel

H
ardw

are
Firm

w
are

O
S/H

ypervisor

RAS Play important Role in modern Server/Cloud Service
• Unexpected Downtime is Disruptive and Expensive -

$5,000 for one-minute outage!!!
• Minimum Reliability Requirement is Rising – 4-nines,

and 5-nines

RAS Stack Topology
• Boot-time: Initialize RAS driver and install

Runtime/SMM RAS handler
• Run-time: When HW error happened
§ Firmware: RAS SMM handler process the error and

Failure Telemetry
§ OS/Hypervisor: Further Error handling and Read error

log etc.

Gap with Intel® FSP Support
• No Runtime/SMM Support

Solution to enable RAS within Intel®
FSP binary

RAS
handler A

FSP - T

MmIPL
PEIM

SMM execution Environment

MmFoundation
SmmCpuCore

Standalone
MM Core

Standalone MM modules
(RAS, Late MM Loader)

FspSiliconInit Notify PhaseHOB

Silicon Init
(mem, cpu, iio, etc)

Solution to enable Standalone MM/RAS with Intel® FSP

Solution Components
• RAS modules: Convert DXE/SMM RAS driver into PEIM and

Standalone MM
• MM Core/Framework: support launching Standalone MM modules
• Late MM loader: dispatch OEM MM modules in later boot phase
• Runtime MM update: Introduce Runtime Update Framework to

receive new MM module entered in OS time
• Encapsule Standalone MM Core, RAS module (PEIM, Standalone),

MM Late loader, Runtime update framework into Intel® FSP binary
During Boot-time: Initialize MM core in early Silicon-Init phase,
dispatch RAS driver from FSP

Pre-Memory MemoryInit

Late MM
Loader

DRAM

Runtime
MM Update
framework

Runtime
SMM

Capsules

OS and
RuntimeRAM Stage Pre-OS Boot

loaderROM StageBoot
Block

FSP - M

FSP Binary

Coreboot

RAS
handler X

RAS
handler A

OEM
Standalone MM

OEM MM
Modules

Runtime: ACPI

OEM MM
Modules OEM MM
Modules

RAS Demo Flow
Intel® FSP HOB Core-boot LinuxBoot

(u-root + bzImage)
1

2

1. Parse HOB and Publish
ACPI for RAS Address
Translation Handler

1.Add Required PEIM drivers
2.Add Standalone MM Core
3.Add Required Standalone MM

drivers for RAS

Linux OS

1.ACPI Table (for RAS)
exposed.

1.ACPI Table (for RAS) exposed
2.Address Translation Handler

can be triggered in runtime
via SMI

FSP API Call

3

Demo Configuration
§ Demo use cases: RAS Address Translation Handler

Flash Image include
§ FSP Binary (with API support) + Coreboot as boot loader
§ Linux Boot used as pre-OS payload

Ubuntu as Target Production OS

Demo Flow: System Boot successfully, and doing checkpoint in
Boot time and Runtime stage

During Boot Time
§ Confirm ACPI Table exposed as expectation in Coreboot
§ Confirm ACPI Table exposed as expectation in Linuxboot

Runtime Stage
§ Confirm ACPI Table is exposed correctly
§ Triger Software SMI, Address Translation Handler was triggered

as expectation

1

2

3

Demo Intel® FSP HOB Core-boot LinuxBoot
(u-root + bzImage)

Linux OS

By FSP: 1). SMI handler is installed. 2).
HOB is Exposed HOB to boot loader

In Coreboot: Received from HOB, and
build ACPI record

In Linuxboot: Acpi
table is exposed

In Ubuntu: SMI handler is triggered,
ACPI table is installed

Call to Action
Get involved into Open Compute Project

Open System Firmware: https://www.opencompute.org/projects/open-system-firmware

Engage with Intel on FSP and Open Firmware Development
Intel FSP: https://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html

Intel EDKII: https://github.com/tianocore/edk2

https://www.opencompute.org/projects/open-system-firmware
https://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html

Thank you!

