Specifying Oscillator Holdover for Data Centers
Specifying Oscillator Holdover for Data Centers

Gary Giust, Sr Mgr Technical Marketing, SiTime
Nazariy Tshchynskyy, Sr Mgr Customer Engineering, SiTime
Agenda

1. Motivation
2. Test parameters
3. Test method
4. Call to action
OCP-TAP Simplifying Oscillator Selection

Problem
• Difficult to understand holdover performance from oscillator datasheet
• Difficult to select oscillator for a use case

Goal
• Enable transparent, apples-to-apples comparison of oscillator holdover

Proposed Solution
• Specify max time error at holdover time, τ_h
• Specify a holdover test methodology
OCP-TAP Specifies Test Parameters
Use Case Dependent

• Holdover time, τ_h
• Thermal profile – target starting temperature(s), ramp rate, soak time
• Operating ambient-temperature range
• Ambient temperature to measure aging
• Ambient temperature to measure frequency versus time trend
• Acceptable probability of error, P_E, required by system
• Training time before entering holdover, $\tau_{Training}$
• Sample-unit population, N, and distribution
 o For example: 10 random units from each of 3 lots, each with a different process and assembly
• Trial population, M, to capture random variations per unit
• Whether the system compensates for aging
OCP-TAP Specifies Test Method
Use Case Independent

Measure
• Frequency stability over the specified operating ambient temperature range
• Frequency versus time at the specified ambient temperature

Compute
• Extract daily aging, thermal drift and wander from measured data
• Max time error $E_{\text{max}}(\tau_h)$ up to holdover time τ_h and derived from Gaussian distributions for
 o Aging – $m_a(\tau_h), \sigma_a(\tau_h)$
 o Thermal drift – $m_T(\tau_h), \sigma_T(\tau_h)$
 o Wander – $m_w(\tau_h), \sigma_w(\tau_h)$

Report
• $E_{\text{max}}(\tau_h)$
• Vendor-specific test conditions and restrictions needed to reproduce results
Model Contributions to Time Error

POPULATION

- **Aging**
 - N units

- **Thermal Drift**
 - N units

- **Wander**
 - N units × M trials/unit

TIME ERROR HISTOGRAM

- \(\sigma_a(\tau_h) \)

- \(\sigma_T(\tau_h) \)

- \(\sigma_o(\tau_h) \)

TOTAL TIME ERROR

- \(m_{max}(\tau_h) = m_a(\tau_h) + m_T(\tau_h) + m_w(\tau_h) \)

- \(\sigma^2_{max}(\tau_h) = \sigma^2_a(\tau_h) + \sigma^2_T(\tau_h) + \sigma^2_w(\tau_h) \)

Total Distribution of Time Error at \(\tau_h \)

- \(m_{max}(\tau_h) \)

- \(\sigma_{max}(\tau_h) \)
Compute Max Time Error

\[E_{\text{max}}(\tau_h) = m_{\text{max}}(\tau_h) + Q_x(P_E)\sigma_{\text{max}}(\tau_h) \]

Interpretation
- All units shipped will not exceed \(E_{\text{max}}(\tau_h) \) up to holdover time \(\tau_h \) with at most probability of error \(P_E \)

\[Q \text{ converts RMS to Peak for a specified error rate, } P_E \]

\[|m_{\text{max}}| \gg 0 \quad m_{\text{max}} \approx 0 \]

2 Possibilities

1-Sided
- \(x = 1 \)

2-Sided
- \(x = 2 \)

<table>
<thead>
<tr>
<th>1-(P_E)</th>
<th>(Q_1(P_E)/\sigma(\tau_h))</th>
<th>(Q_2(P_E)/\sigma(\tau_h))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.682689</td>
<td>0.475</td>
<td>1.000</td>
</tr>
<tr>
<td>0.954499</td>
<td>1.690</td>
<td>2.000</td>
</tr>
<tr>
<td>0.997300</td>
<td>2.782</td>
<td>3.000</td>
</tr>
<tr>
<td>0.999002</td>
<td>3.091</td>
<td>3.291</td>
</tr>
<tr>
<td>0.999900</td>
<td>3.720</td>
<td>3.891</td>
</tr>
<tr>
<td>0.999937</td>
<td>3.833</td>
<td>4.000</td>
</tr>
<tr>
<td>0.999990</td>
<td>4.754</td>
<td>4.892</td>
</tr>
<tr>
<td>0.999994</td>
<td>4.865</td>
<td>5.000</td>
</tr>
</tbody>
</table>
OCP-TAP Welcomes Your Feedback

• Participate in weekly OCP-TAP Oscillator Workstream
 o Contact Gary Giust (email in Wiki page below)
 o Nov 17, OCP-TAP Main Meeting will review Oscillator Workstream work

• View recordings of Oscillator Workstream meetings on Wiki page
 o https://www.opencompute.org/wiki/Time_Appliances_Project

• Subscribe to OCP-TAP mailing list
 o https://ocp-all.groups.io/g/OCP-TAP

• “Open Time Server” Github page
 o https://github.com/opencomputeproject/Time-Appliance-Project/tree/master/Open-Time-Server
Thank you!