

OCP - ODSA Project

Commercialization Use Case

cadence

UltraLink D2D PHY & OHBI

Rishi Chugh

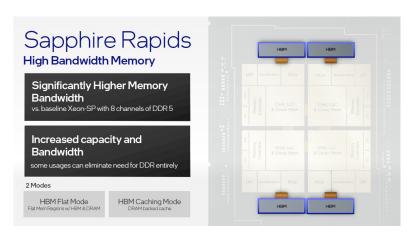
Chiplet Examples for Heterogenous System Design

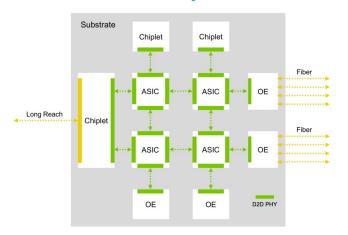
- New Design paradigm, from IP reuse to Chiplet reuse
- Primary drivers for chiplet functionality:
- Multi-Core
- GPGPU
- CPU + Workload accelerator
- Scientific computing
 - **Processor**
- Mem
 Controller Die

 64 ↑ ARM
 Neoverse v1
 Core

 Mem
 Controller Die

 PCIe Controller
 Die

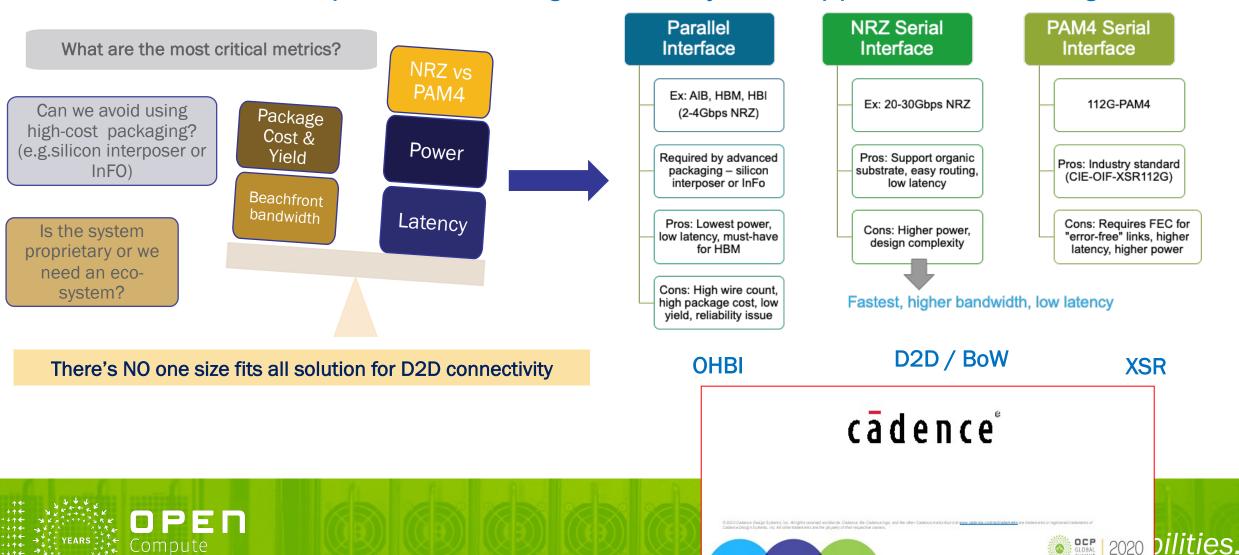

 PCIe Controller
 Die

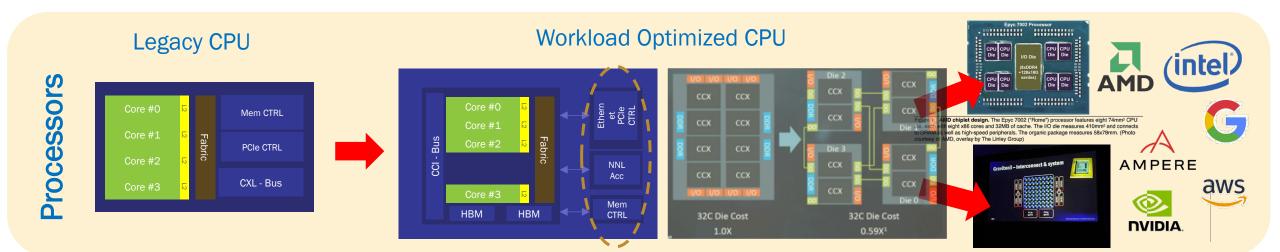

- HBM Cache Extensions
- PIM (Processing In Memory)
- Packet Buffering / Look Ups
- Data Analytics / Cache Ext

Memory / Storage

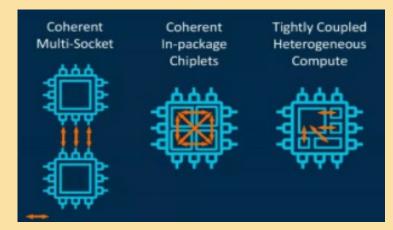
- Host / Client / IO Peripherals
- NoC (Chip / Interposer)
- Server SoC (CPU+Chipsets)
- WEB servers , Fabric , NIC

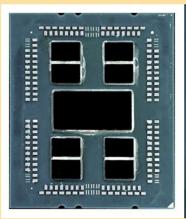
CONNECTIVITY

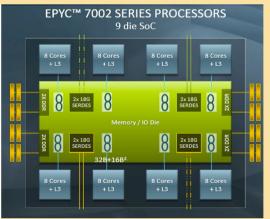


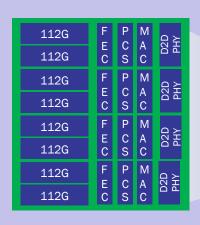

High Speed Connectivity & Chiplets Strategy

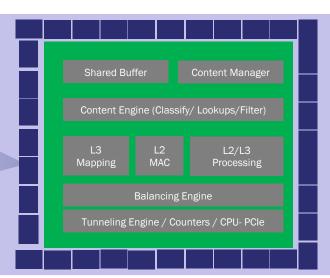
Investment for Chiplet based design driven by SoC Application & Scaling




Project

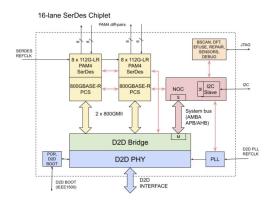

Chiplet Landscape (OEM, Close Box, High Barrier To Entry)

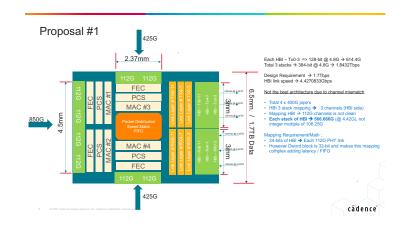


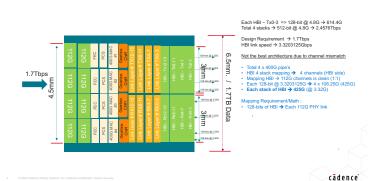


Chiplet Landscape (CDNS has all these IP + System know how)

- LO/L1 layer implemented on the chiplet
- Provides optimal fabric design flexibility
 - scalability, larger buffer for high bandwidth
 - i.e. 25T+ on monolithic die
- Can be potentially extended to enable
 GB , FEX & Multi-Channel features on the chiplet







Block Diagram

Proposal #2B

SoC-Advance Package Integration To Chiplet Partitioning

Cadence / ODSA

- Cadence contributing and carving industry path towards chiplet based SoC design
- Full 3D tool support working on close partnership with OCP as well as leading multiple foundry house
- Successful commercial deployments of chiplet based SoC architectures
- Closely contributing, following and enabling industry on BoW & OHBI standards
 - Existing UltraLink offering similar to BoW architecture
 - OHBI under development for industry enablement

Comparison: Technical Specifications

Metrics	Die-to-Die	112G-XSR	HBI* v1.1
Line Rate	20-40Gbps	112Gbps	16Gbps
Number of wires in a macro	6 Rx or Tx	Up to 8	64 to 1024 bits
Max Beachfront Bandwidth (Gbps/mm) (single row)	500 Gbps/mm	500 Gbps/mm	>4 Tbps/mm (Tx + Rx aggregated)
Insertion Loss @ Nyquist	8db @ 20GHz	10db @ 28GHz	<3db @ 16GHz
Signaling	Single Ended, NRZ	Differential, PAM4	Single Ended Data, Differential Strobe
Power (pj/bit)	1.5pJ/bit	1.87pJ/bit	0.5pJ/bit
Lane Area (one TX+RX)	0.67mm ² (240G Rx + 240G Tx, half duplex)	0.31mm² (112G Rx + 112G Tx, full duplex)	0.168mm² (512G Rx + 512G Tx, half duplex
Area/Tbps	2.8 mm ² /Tbps	2.76 mm ² /Tbps	0.22 mm ² /Tbps
Clocking	Forwarded Clock	Independent clock (CDR)	Forwarded Clock Strobe
PMA Latency	5.4ns (Rx+Tx @ 40Gbps)	8.4ns (Rx+Tx @ 112Gbps)	<5 ns Tx "DFI"->Pad <5 ns Rx Pad -> "DFI"
Per Bit Alignment	Per bit Phase adjustment	CDR	Per bit Phase adjustment
Raw BER	1e-15, no-FEC	1e-9 (pre-FEC)	1e-15 (pre-ECC/FEC)
Process	7nm & 5nm	7nm	N3
Bump pitch	130u	130u	40.3/40/70um (diag/X/2Y)
Other	Line Rate flexible for optimal Performance & Power tradeoff	Compatible with Standard Ethernet PMA (OIF-112G-XSR)	0.3V IO

cadence®

