Open. Together.
Open Cloud Server Management in the Exchange Online Service

Matt McCormick
Senior Program Manager, Microsoft
Agenda

Workshop goals:
Share our OCP “customer” perspective on managing Open Cloud Server (OCS) and Project Olympus hardware at scale and discuss opportunities for the Hardware Management group to improve this experience.

Workshop benefits:
Learn about Microsoft “first-party” deployment of OCP servers across a key service offering, how we manage this fleet, and how we’ve engineered solutions to current manageability limitations.
Exchange Online Service Background
Exchange Online

Business-class email and calendaring for enterprise

Effortless email and calendar for consumers

Office 365

Outlook

Open. Together.
Exchange Online by the Numbers

- 100+ datacenters
- 10s of 1,000s of racks
- 100s of 1,000s of servers
- 1,000,000s of disks
- Exabytes of storage
OCP Hardware Usage in the Exchange Online Service
Open Cloud Server (OCS) Chassis Manager

The M1030 Chassis Manager is an ARM processor-based board for enabling management of Server Blades and a WCS Chassis. It is designed to act as a hot-swappable plug-in module for a WCS Chassis.

Specifications

https://www.opencompute.org/wiki/Server/SpecsAndDesigns-old#Open_CloudServer
Project Olympus Rack Manager

The M2010 Rack Manager is an ARM processor-based board for enabling management of Server Blades and a WCS Rack. It is designed to act as a hot-swappable plug-in module for a WCS Power and Management Distribution Unit (PMDU) or as part of a separate Rack Management Module for supporting Non-WCS racks.

https://www.opencompute.org/wiki/Server/ProjectOlympus
Rack Manager Service

The Rack Manager service provides the front end through a Redfish-compliant REST API for automated management and a command-line interface for manual management. It manages all devices within the rack and communicates directly with the server management system through the network.

https://github.com/opencomputeproject/Project_Olympus_rack_manager
OCS Toolkit

The Open Cloud Server (OCS) Operations Toolkit is a collection of scripts and utilities for updating, diagnosing, and testing OCS servers.

https://github.com/opencomputeproject/ocs-source-code-and-operations-toolkit-for-open-cloudserver
Managing the Exchange Online Service Infrastructure
Bare-Metal Provisioning

Retrieve rack inventory from Rack Manager. Compare with expected inventory from asset management system.

Run Rack Manager hardware diagnostics. Boot machines to WinPE and run OCS Toolkit hardware diagnostics.

Create logical units of capacity from set of healthy machines discovered.

Install operating system image, install service components, install patches, configure, etc.

Perform final service checks, set up monitoring probes, prepare for service.

Server Discovery

Burn-In

Allocation

Deployment

Service Readiness

Live

“AssemblyLine”
Hardware Failure Detection & Repair

"RepairBox"

OCS Toolkit

Rack / Chassis Manager

Windows Event Log, WMI, etc.

Open. Together.
Hardware Failure Detection & Repair (cont.)

Test

- Every 8 hours
 - Run full test suite against every machine in inventory
 - Store test results in RepairBox database

Triage

- Every 1 hour
 - Parse latest test results to identify underlying failures
 - Create or update associated failure entries in RepairBox database

Repair

- Every 4 hours
 - Take machine out of service for repair, if needed
 - Perform repair actions (auto-remediation or break/fix ticket)

Repair (cont.)

- Every 4 hours
 - If initial repair is unsuccessful, perform additional repair actions
 - If subsequent repair actions are unsuccessful, flag machine for service engineer attention

Return to Service

- Every 4 hours
 - Validate repairs and re-configure machine
 - Check for any new hardware issues
 - Return machine to service

Note: Exchange Online is a highly available service with multiple layers of redundancy that enable us to meet the committed Office 365 SLAs for our customers. These Hardware Failure Detection & Repair timelines are NOT related to the real-time monitoring that happens at the application and service level which, together, ensure uptime of the overall service.
Hardware Failure Detection & Repair (cont.)

How to handle low-confidence signals?
Signal aggregation and multi-layered triage (subsystem, machine, rack, etc.).

How to handle “gray” failures?
Prediction model based on observed, historic failures from similar machines.
Disk Failure Detection

No disk failure detection using out-of-band management (Redfish) interface on the WCS platform. Disk failures can only be detected and identified using in-band methods.

How to handle OS disk failure detection?
Remotely boot “unresponsive” machines to a WinPE diagnostics image and run in-band diagnostic tools.
Break/Fix Tickets

Refining diagnostic signal over time, reducing no-fault-found tickets and reducing time-on-task for repairs.

Note: This data for all servers and SKUs in the Exchange Online fleet, not just the Open Cloud Server platform servers and SKUs.
Hardware Availability

Monthly Hardware Availability (WCS Gen 5.0 + WCS Gen 6.0)

Note: Exchange Online is a highly available service with multiple layers of redundancy that enable us to meet the committed Office 365 SLAs for our customers. This Hardware Availability metric is NOT a measure of Exchange Online service availability.
Call To Action
Asks for Hardware Management Community

- **SimpleStorage implementation in Redfish OCP Server profile**
 Expose disk health information in Redfish for OCP servers, so that disk failures can be detected and identified out-of-band. Significant amount of engineering work and infrastructure is needed today to work around this issue, especially for OS disk failures.

- **Hardware Failure Emulation**
 Move away from a “reactive” approach for developing hardware failure detections and towards a “proactive” method in which we can force Redfish APIs and System Event Log (SEL) to emit the associated failure signals for certain failure modes that cannot otherwise be simulated in a lab environment.

- **Standardize OEM entries in System Event Log (SEL)**
 Currently no standardization for how custom SEL entries are written by OEMs and how they are decoded using IPMI. Significant amount of time is invested today in parsing and understanding SEL entries for each OEM and each diagnostic tool, in order to detect hardware failures that are not surfaced by Redfish APIs.
Get Involved

Hardware Management working group:
https://www.opencompute.org/wiki/Hardware_Management

Open RMC working group:
https://www.opencompute.org/wiki/Hardware_Management/Open_RMC
Questions?

Matt McCormick
mattmc@microsoft.com
Open. Together.

OCP Global Summit | March 14–15, 2019
Abstract

Microsoft's Exchange Online service has converged on the Open Cloud Server (OCS) and Project Olympus platforms for its server infrastructure. We are operating a fleet of 100s of 1,000s of OCP servers, with varying generations and SKUs of hardware, in over 100 datacenters worldwide. This session will cover how we discover, provision, monitor, diagnose, and repair our OCP servers, how we have engineered solutions to current manageability limitations, and discuss opportunities for the Hardware Management group to improve this experience.