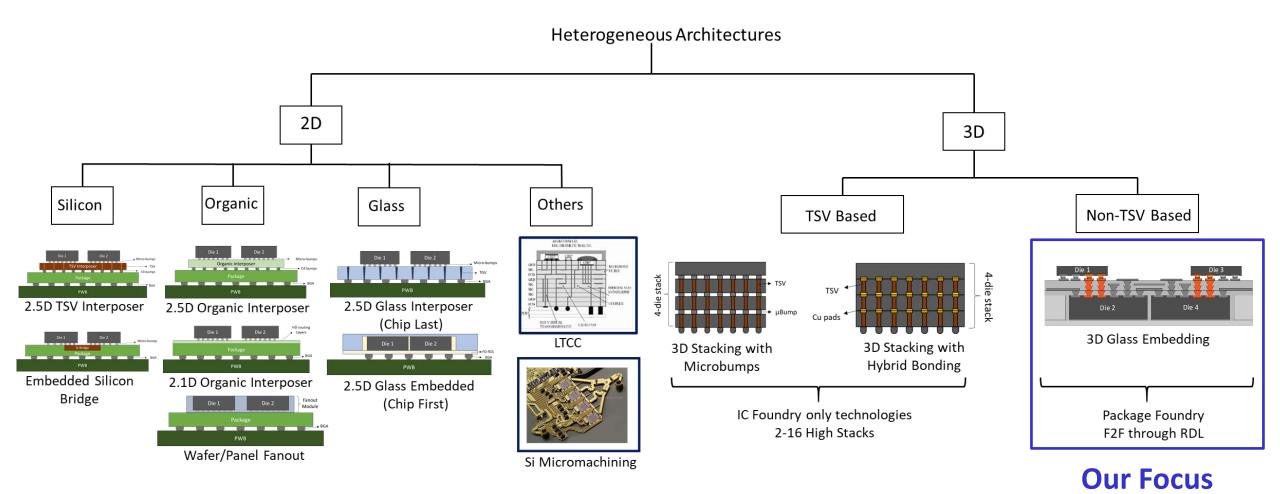
Glass Interposer Integration of Logic and Memory Chiplets: PPA and Power/Signal Integrity Benefits

Pruek Vanna-iampikul, Serhat Erdogan, Mohanalingam Kathaperumal, Madhavan Swaminathan, and Sung Kyu Lim, Georgia Institute of Technology

Ram Gupta, Ravi Agarwal, Meta

Praveen Anmula, Kevin Reinbold, Siemens

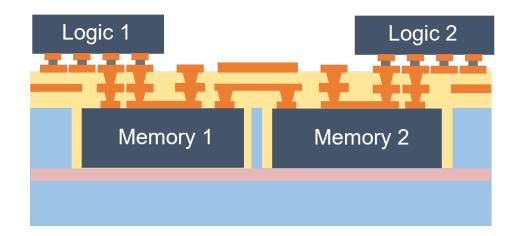
Agenda


Project Goal

- Progress: Glass vs. Silicon Interposer
 - Chiplet design PPA comparison
 - Interposer design PPA & SI/PI comparison

• Plans

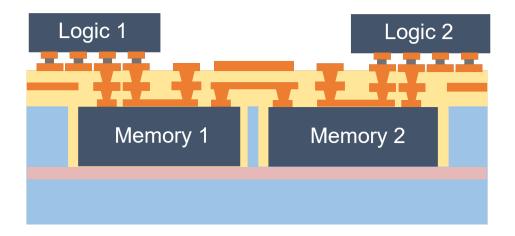
Heterogenous Integration Landscape

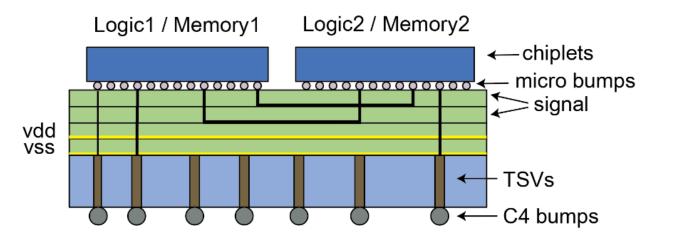

3/20

Glass Interposer

• 5.5D IC

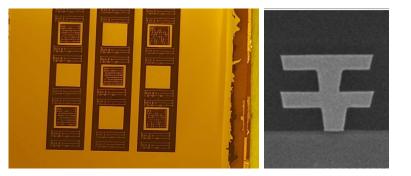
- 2.5D (interposer) +
- 3D (flipped chiplets + embedded chiplets stacked)

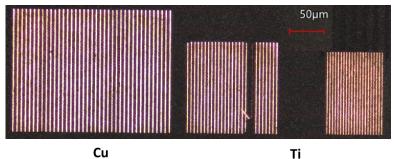

Glass Interposer (5.5D)

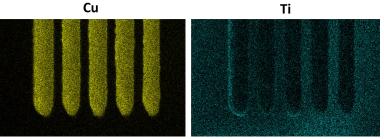

better insulation, better RF, better CTE, larger size, lower cost

Research Goals

- Benchmarking: Glass interposer over silicon and 2D SOC
 - Compare PPA, and Signal/Power Integrity
 - Conduct chiplet/interposer co-design and co-analysis
 - Use GDS layouts and signoff simulations

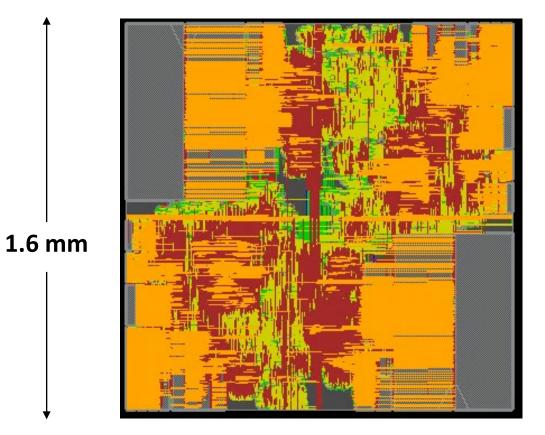




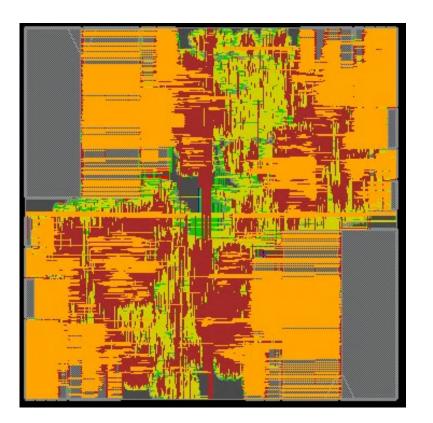

Glass Interposer PDK

Calibrated using measurements

	Glass (GT-PRC)	Silicon (CoWos 65nm)
# Metal Layer	3	4
Metal thickness	4um	1um
Dielectric thickness	15um	1um
Min. Wire width / spacing	2um / 2um	0.4um / 0.4um
Via size	12um	0.4um
Pad size	22um	0.7um
Die-to-Die spacing	100um	100um
Micro-bump pitch	35um	40um
PDN width/spacing	40um /	100um

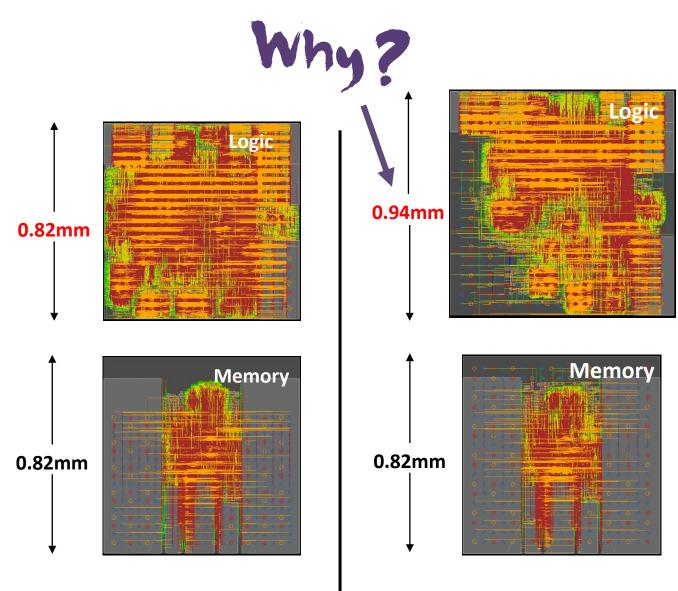

Design Settings

Chiplet design


- 400K-gate RISC-V
- Partitioned into 4 chiplets: 2 logic, 2 memory
- I/O Driver: Intel AIB
- 330mW, 645MHz, 1.6x1.6mm @ TSMC 28nm

Interposer design

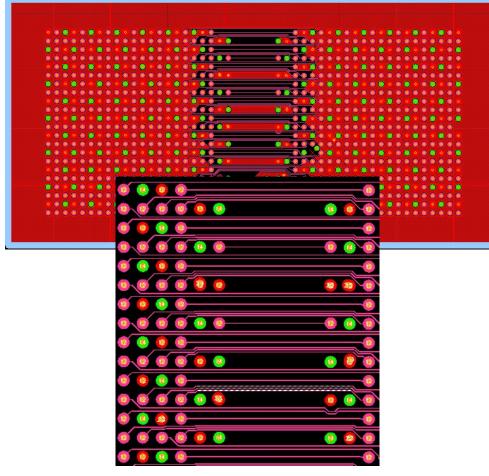
- 4 chiplets placed and routed
- Glass: GT-PRC
- Silicon: TSMC CoWoS 65nm

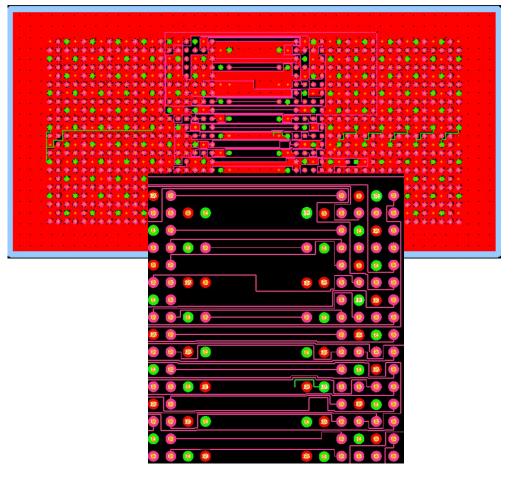


2D monolithic RISC-V (= single chip)

Chiplet GDS Layouts

2D Monolithic

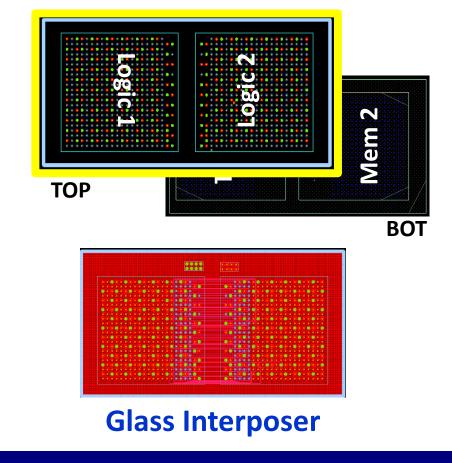

Glass Interposer

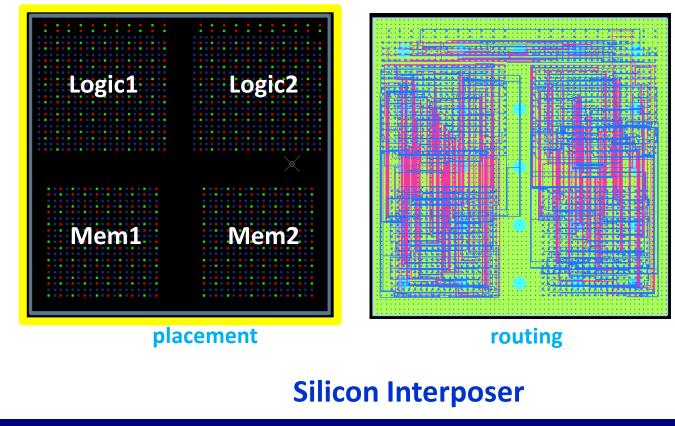

Silicon Interposer

HIPCHIPS 2022

8/20

Interposer Signal Routing (both Glass and Silicon)


Manhattan (new)


diagonal (old)

Interposer GDS Layouts

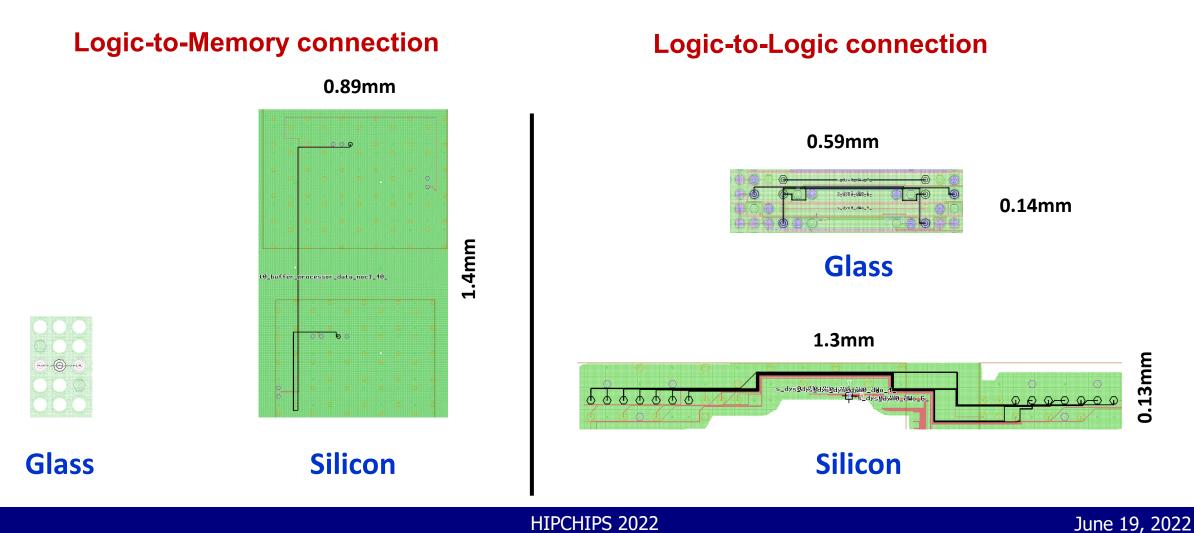
- Glass interposer footprint is 2x smaller
 - We embedded memory chiplets into the glass

placement

routing

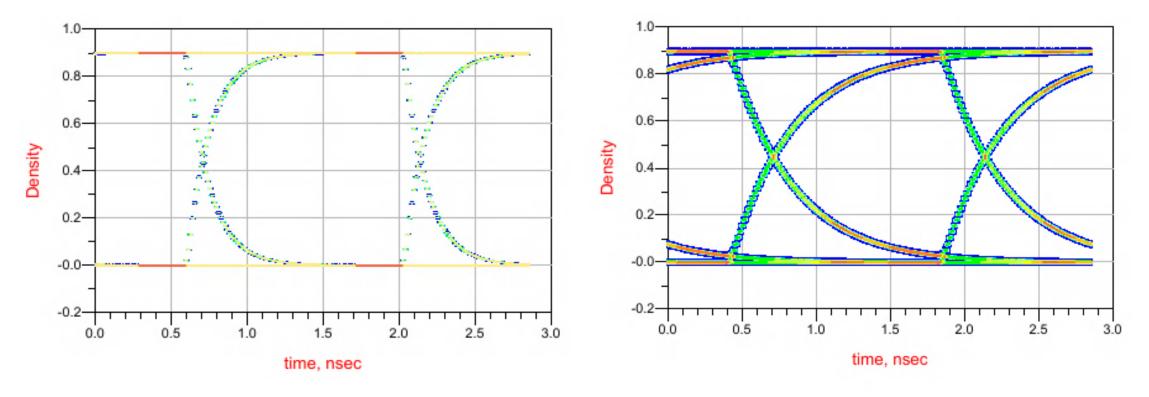
10/20

Area, Wirelength, Cost Comparisons


Huge saving with glass interposer

• Due to smaller footprint made possible with 3D stacking of chiplets

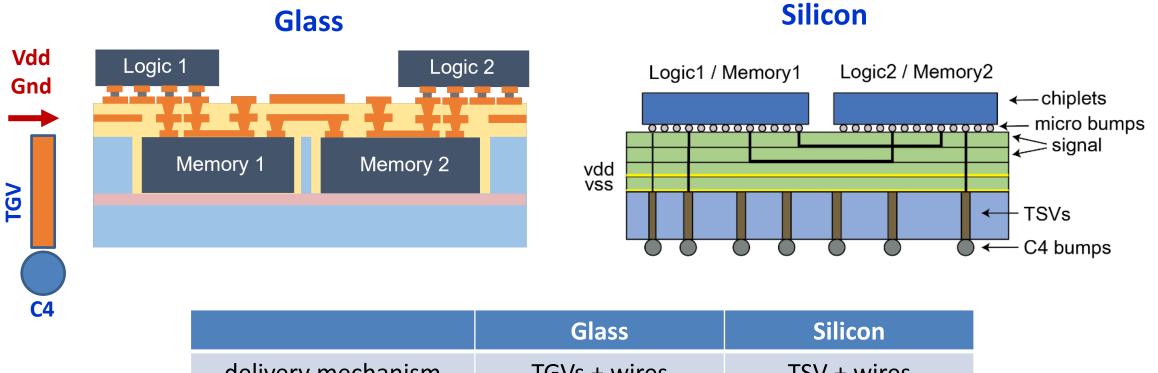
		2D	Glass	Silicon	Glass benefit
	Area (mm²)	2.56	1.87	4.84	2.6 x
Area, WL,	Metal layer used	-	3	4	1.3x
Cost	Total interposer WL (mm)	-	37.9	937	24.7x
	interposer via usage	-	2560	2821	1.1x
PI	PDN DC Impedance (ohm)	-	0.97	7.9	8.1x
SI	Eye width/height (Logic-to-Mem)	-	1.415ns/0.896v	1.381ns/0.817	-
Transient	Settling Time (us)		3.7	4.1	1.1x


Signal Integrity Comparison

Nets used for SI analysis: worst-case victim

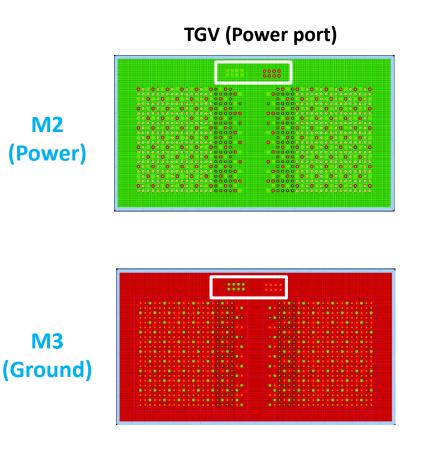
Signal Integrity Comparison (cont)

- Eye diagram comparison: Logic-to-Memory
 - Glass has a better eye: due to a shorter WL

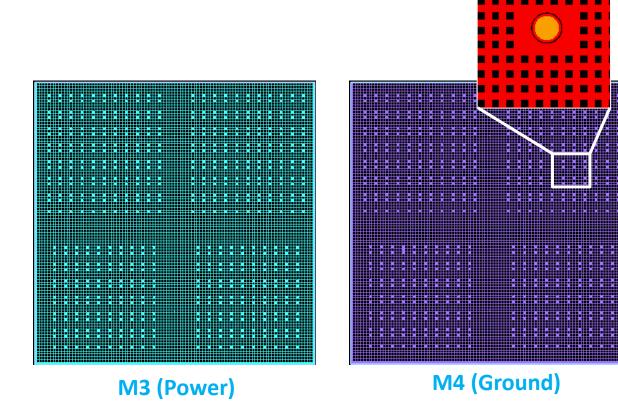


Glass W/H: 1.415ns/0.896V

Silicon W/H: 1.381ns/0.817V


Power Integrity Comparison

Based on full-chip power delivery network (PDN) ٠



delivery mechanism TGVs + wires TSV + wires topology plane or grid plane

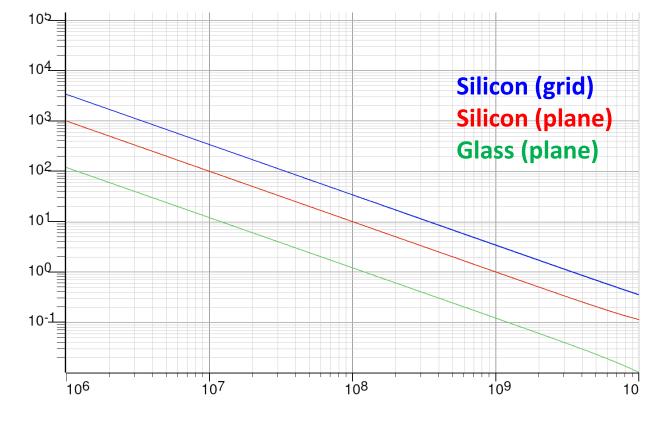
PDN routing (plane for glass, grid for silicon)

Glass Interposer

TSV (Power port)

407

Silicon Interposer (plane)


15/20

M2

M3

PDN impedance comparison

Glass shows the lowest impedance: due to smaller area

Frequency (Hz)


11							È			÷	1		Ť		11		1					1		È		t		E			1			T							Ť				12		ï			-				÷.	H		T.	ł
																					1		11																																			
																							•																																			
																				L	1	1	•	•																																		
					•						1				•			T.																						7		1			2	ς.		2	•				-					
ł																					ň									1	1		÷.	÷	η.	1	ě.	ñ					ę,		į,				5			1	F.					
ł	1		•			٠			c	R			•			6				•														T	T			٠			1	1		e			5	ō			1	5			•	1		
																							π									0						ō																				
					٠			٠							•																		1		I.	Л			٠			1	•		C								•					
	12											2											1	•		i.	11	Ξ	T	2	X		×.	π	24			0																				
Ş	L,					۰			9	2			2								0																	0						9				9			J.	2			9			
ţ	8	2			2			2				2		2	8								1	2.							2	•			ž	4	2	9	2				2		2			2	2	2			2					
1	2			2			×		2				e.	2	2									2									1		5	f	1		9	5			2	4	i.		4	÷	2				2	2	2			
ŝ	-		2			-		×	r,					2						ŏ				2						2	4		2		4		ł	2	H		1		2	2	è		Ċ,	2	j,	i,		ł,	e.	z	2			
h	ø		×.			×.			a.	e		ŝ,	r.								ŏ		1	-							1	-	è		÷		1	×.		24	e.	٢,	e,	a,	i,		C,	Ĕ.	i.			R.	s,	k	1		1	
i,	2				-							1	4	λ.	2						ŏ														P	7	1		-	2			2		2	1		÷	-	t,			2					
																								5						1	1		i.	Ť	T.								R,		ę,				2				В.					
c	1		•			٠			0							٠	l e			٠	0				1	i.		2	t			Ē	6	ī.				•			ł	1		•			5	•			1	0					Г	
																					6		ų									0	1																									
					٠			٠							۰																		1			1			٠				•		C						ġ.,						-	
																								•					1	1					2		2	ņ	Ċ	2																		
Ş	J.		•						9				2			•							2									0		2			2	•		2		2		9				•			Ľ	2			9			
ę	4	4			2			2	P			2		2	2			l				ų	4										2		Ľ,	1	2		2	P			2		f.			2	2			4	2		9			
ŝ	4				2			2	ł.		8			2	2						1			÷						-	÷		ļ,		5	4	4		2	Ľ			2		b	4	č.	è	2	ċ		e,	e.	2	2			
1		r,							P	1			٢.	1		P.		1	2	ę,	-	2		2					1	1	1		1	1	e	4	2			۴	1		Y,		r,		í.	2	Y				r,	r.	2		Ι.	
																	r,	r,	÷	ń	T.	÷			÷,				1		r,	r.	÷	r,	t.																							

Silicon

16/20

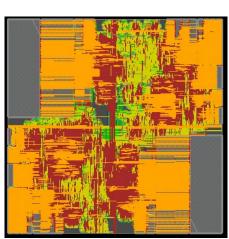
Z (Ohms) [Magnitude]

- Power transient: 125MHz switching input @ memory chiplet
 - Glass shows better transient: due to lower PDN impedance + lower power

17/20

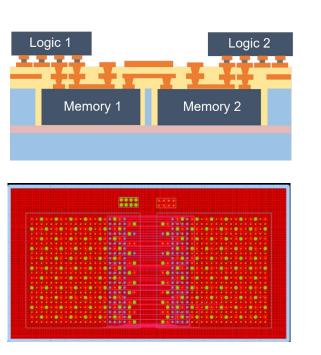
PPA + SI/PI Comparisons

- Huge saving with glass interposer
 - Smaller footprint made possible with 3D stacking of chiplets

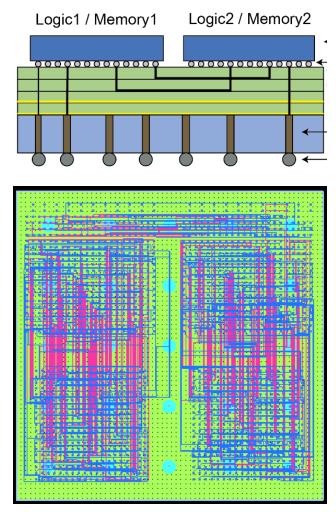


		2D	Glass	Silicon	Glass benefit
	Area (mm²)	2.56	1.87	4.84	2.6x
Area, WL,	Metal layer used	-	3	4	1.3x
Cost	Total interposer WL (mm)	-	37.9	937	24.7x
	interposer via usage	-	2560	2821	1.1x
PI	PDN DC Impedance (ohm)	-	0.97	7.9	8.1x
SI	Eye width/height (Logic-to-Mem)	-	1.415ns/0.896v	1.381ns/0.817	-
Transient	Settling Time (us)		3.7	4.1	1.1x

Summary


Glass vs. silicon interposer comparison

- Glass supports cheap solution to 3D chiplet stacking
- Glass interposer shows better PPA + SI/PI



SoC

19/20

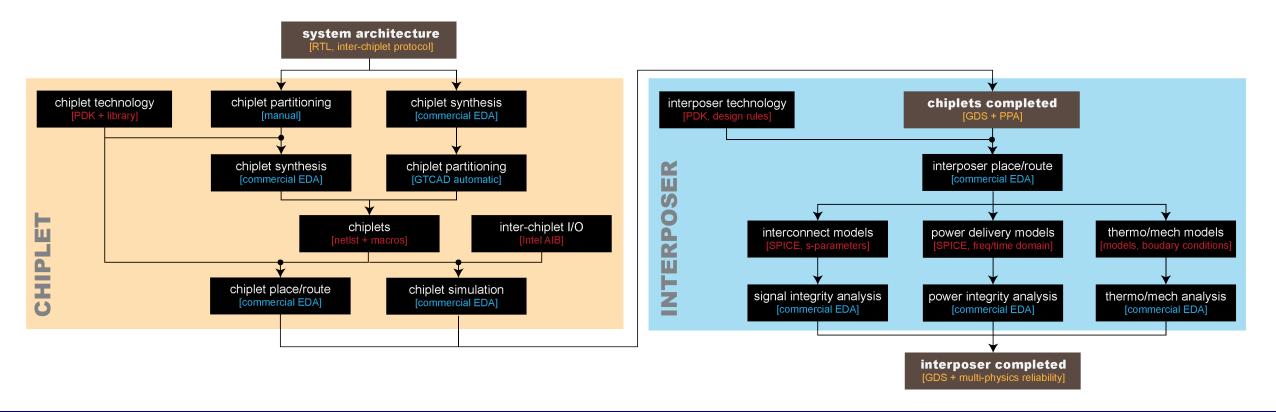
Glass Interposer

Silicon Interposer

Future Directions

- Thermal analysis
 - 2D vs. Glass vs. Silicon

- Comparison with organic (LCP) interposer
 - 2D vs. Glass vs. Silicon vs. LCP


• Explore chiplet partitioning options

Migrate to larger benchmark and reuse chiplets

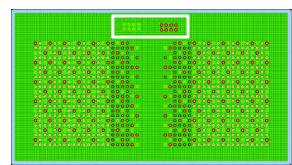
SUPPLEMENT

Chiplet/Package Co-Design Tool/Flow

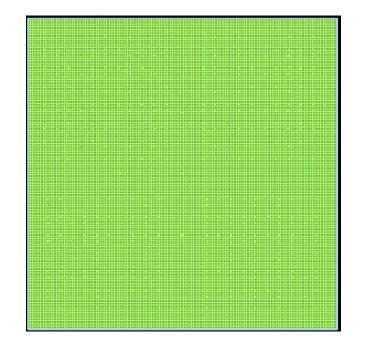
- Chiplet/package co-design
 - Chiplet: Cadence and Synopsys IC, Interposer: Siemens
 - Enhanced with our custom plug-ins (auto-chiplet partitioner, ML-based passive designer)

Signal Integrity Comparison (cont)

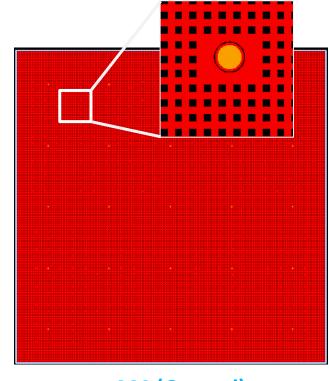
- Eye diagram comparison: Logic-to-Logic
 - Glass has a better eye: due to a shorter WL



Glass W/H: 1.401ns/0.88V


Silicon W/H: 1.387ns/0.851V

PDN routing (plane-style)


TGV (Power port)

								-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	1											
												-																							
														i.																					
									ł			È	Ť			t.																			
	1			5		Ľ				-	r					11								4				L.						ų	
																				•															
													•																						
				2		2																				1		5						2	2
					3				1		c																•				c				
													٠																						
	٠			1		٠																		e				•							
																				۰															
													۰																						
																				۰															
																																2			
													۰																						
																				2												2			
																																1			

TSV (Power port)

M3 (Power)

M4 (Ground)

Silicon Interposer (plane)

Glass Interposer

M2

(Power)

M3

(Ground)