OSF for Intel Xeon-SP OCP Servers Reaching New Height

Meta: Jonathan Zhang
Wiwynn: Johnny Lin
Quanta: Tim Chu
9E: Arthur Heymans
SysPro: Marc Jones
Agenda

• High level Status / Plan
• OCP DeltaLake server in your fingertip
• New Features / Changes
• Q&A
Status

<table>
<thead>
<tr>
<th>Intel Xeon Scalable Processor</th>
<th>OCP Server</th>
<th>Intel FSP API Mode Status</th>
<th>OSF Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sky Lake SP</td>
<td>TiogaPass</td>
<td>Proof Of Concept</td>
<td>POC achieved (2020)</td>
</tr>
<tr>
<td>Cooper Lake SP (CPX-SP)</td>
<td>DeltaLake</td>
<td>Statement Of Work</td>
<td>Pre-production ready achieved, OCP acceptance achieved (2021)</td>
</tr>
<tr>
<td>Sapphire Rapids SP (SPR-SP)</td>
<td>Being developed</td>
<td>Plan Of Record</td>
<td>Production ready in progress</td>
</tr>
</tbody>
</table>
Production Ready

At least on-par with traditional firmware approach on:

- PO/EVT/DVT/PVT schedules
- Validation Scope
 - Cross functional group testings equivalent to traditional firmware
- Feature set
- Stability/Performance/Power
Eco-system

• Collaborating with multi-hyperscalers on the technology development, great progress
 ○ Meta targeting single socket server for production ready
 ○ ByteDance targeting dual socket server for production deployment
 ○ And several other hyper-scalers doing technical preparation
• Shared code base (private till Intel SPR-SP product launch)
• Multiple collaboration channels
• Frequent meetings
Primary technology contributors

- Intel
- Hyperscalers
 - Amazon
 - ByteDance
 - Google
 - Meta
- ODMs / OEMs
 - Inspur
 - Quanta
 - SuperMicro
 - Winwynn
- Independent Firmware Vendors
 - 9E
 - SysPro
- coreboot/LinuxBoot/kernel communities
Benefits Observed

- Accelerate new technology development
- Enable vertical customization
- Improve troubleshooting velocity
- Leverage community resources
Near Term Plan (H2’ 2022)

- Along with Intel SPR-SP product launch, enable Ecosystem to benefit from OSF
 - Intel FSP binary, FSP integration guide, FSP release process
 - Intel ME ignition binary
 - coreboot support for
 - SPR-SP processor
 - Intel ArcherCity Customer Reference Board
 - Single / dual socket customer servers
 - LinuxBoot osf-builder support for Inter ArcherCity CRB, and customer servers
 - OCP OSF white papers (why/how)
 - What’s the benefits
 - How to build/run on ArcherCity CRB
 - How to enable OSF for YOUR SPR-SP based servers
 - How to contribute back to the ecosystem
OSF Builder

https://github.com/linuxboot/osf-builder/

forked from facebookincubator/osf-builder

osf-builder contains tools to build OSF (Open System Firmware) firmware images, and to keep track of their versioning information.

MIT License

2 stars 6 forks
OCP DeltaLake Server in Your Fingertip

- OSF submission for DeltaLake
 https://github.com/opencomputeproject/OpenSystemFirmware/tree/master/Wiwynn/deltalake
- OCP community lab
 - OSF checklist validation, easy access for community development, testing and evaluation.
- Easy to reserve
- Easy to build/flash/boot
Wiwynn’s work through CraterLake

- CXL type 3 support, CXL memory available as system memory
- ME HECI-1 interface support, able to manage ME from host
- RAS: DMI, PCIe eDPC, memory, CPU firmware first error handling
- FSP EWL (Enhanced Warning Log) error handling for error DIMM reporting via BMC SEL right after MRC training
- SMM runtime serial log control via VPD firmware variable
- Improve u-root GRUB BLSCFG support in ‘boot’ command: support CentOS 8 and other newer distributions
QCI’s work through DeltaLake/S9S

- DeltaLake – Single socket server based on Intel CopperLake-SP
- S9S – Dual socket server based on Intel SapphireRapids-SP
- Early porting for SuperI/O to activate serial ports and debug port.
 - PCH Porting
 - Enable decoding of I/O address for SuperI/O (0x2E/0x2F and/or 0x4E/0x4F) and serial ports (0x3F8 - 0x3FF and 0x2F8 - 0x2FF)
 - SuperI/O Porting
 - Configure and activate above serials port address.
 - Configure respective multi-function pins for I/O 80 port to output POST codes.
 - https://review.coreboot.org/c/coreboot/+/40481 is reusable for new platform with the same PCH and SuperI/O.
QCI’s work through DeltaLake/S9S

- CXL card support on dual socket system
 - CXL capabilities can be found using lspci command
 - Memory Latency Checker tool can see CXL node
QCI’s work through DeltaLake/S9S

- Smbios table porting on new platform, including type 8, 9, 11 and so on.
- Support NVMe Hot-plug.
- Add VPD items to control system behavior.
 - MRC warning promote
 - Control whether system to bypass memory training failure or hang in FSP.
 - Dimm frequency setting
 - Select which dimm frequency limit to be used.
- ACPI BERT table implementation (for MCA bank errors) (ongoing)
9elements work on security and coreboot core code

- Converged security suite: Open source tooling for Intel CBnT (Converged bootguard and TXT)
- CBnT setup and integration in coreboot
- CBnT + coreboot measured boot integration (early TPM)
- MP init on ‘many’ cores (spinlocks, SMM, halt before CBnT, …)
SysPro’s XEON_SP contributions

- XEON_SP shared code structure
 - limited code duplication in soc/intel/xeon_sp & soc/intel/common
 - src/intel/xeon_sp: ~5500 lines code + headers
 - src/mainboard/ocp/deltalake: ~900 lines code + headers
 - src/mainboard/ocp/tiogapass: ~600 lines code + headers
- XEON_SP PORTs/STACKs coreboot and ACPI resource allocation
- ACPI - new and updated tables - DMAR, SRAT, SLIT, CEDT
 - multi socket and high count core/thread support
- LinuxBoot & u-root additional loader integration (pxeboot)
Call to Action

- Join open system firmware slack: https://slack.osfw.dev/
- Use coreboot for OCP DeltaLake server based on Intel Xeon Scalable processor:
 - https://github.com/opencomputeproject/OpenSystemFirmware/tree/master/Wiwynn/deltalake
- Benefit and Contribute:
 - OCP OSF for Intel SPR-SP based platform
 - OCP community lab
Open Discussion