Open. Together. OCP カナナナスト

Cost-effective Approach for Telco Network Analysis in 5G

Junho Suh, Research Engineer, SK Telecom

Agenda

- Introduction to Project TINA
- Software
 - Programmable Network Packet Broker (NPB)
 - DPDK-based Probes
 - DPDK-based Network Packet Capture (FloX)
- Hardware
 - 1st-gen network appliance hardware design (T-CAP)
 - Disaggregation approach

Project TINA (SKT integrated Network Analytics)

Network Visibility Platform

- Provide end-to-end visibility to Telco network operators
- Reduce TCO of Telco network monitoring tools
- Open hardware/software approach
- Launched @2017

High-Level Design

Use Case #1 - Network Performance Monitoring for B2C/B2B Services

Running 200+ B2C/B2B services including T-View (CCTV Cloud), NUGU (AI-based Voice Assistant), T-Map (Mobile Navigation app.), etc

What to measure?

- Total traffic volume in bytes, packets, and number of flows per each service
- TCP session context
 - TCP seq. number, SYN, ACK, RST, ...
- Anomaly detection using ML technique
 - Abrupt traffic explosion/reduction
 - Volume-based DDoS attack

Use Case #2 - IPTV Service Quality Monitoring

Serving IPTV content across 600+ domains

What to measure?

- DNS resolution result from GSLB
- Where is the location of content server?

Use Case #3 - LTE/5G Network Quality Monitoring and Troubleshooting

	Call Flow Types		Call Flow Types
4G / 5G NSA	•Initial Attach	5G NSA	 Secondary Node Addition
	 Attach after Paging 		•Secondary Node Change
	Mobile-triggered Service Request		 Inter-Master Node Handover with/without Secondary Node Change
	 Network-triggered Service Request 		 Master Node to eNB/gNB Change
	• Paging		•eNB/gNB to Master Node Change
	•Tracking Area Update		
	Dedicated Bearer Setup		
	•S1 Handover		
	•X2 Handover		
	• Detach		

Agenda

- Introduction to Project TINA
- Software
 - Programmable Network Packet Broker (NPB)
 - DPDK-based Probes
 - DPDK-based Network Packet Capture (FloX)
- Hardware
 - T-CAP
 - Disaggregation approach

Network Packet Broker (NPB)

Requirements

- L2~L4 based filter
- Forward/Load balance/Replicate
- For Telco specific requirements
 - GTP protocol support
 - GTP inner user packet headers
 - GTP load balancing
 - IEEE 1588 time synchronization
 - Hardware time stamping

Lesson Learned from using Fixed Function Ethernet Switching ASIC

ASIC limitation

- Parser depth (up to 128B)
- Unnecessary packet processing behavior (e.g., L2/L3/multicast)
 - Lead to increase engineering complexity
- New protocols support (GTP, ERSPAN)
- Header insertion
- Fixed table size
- Limited # of mirror sessions

SDK limitation

- Packet replication implementation
- Only available for multicast traffic (MAC addr, IP addr)
- Hashing fields selection (either outer or inner, or both)
- Load balancing algorithm

Programable Ethernet Switching ASIC and P4 Language

P4 is a formal language describing packet processing behavior

- Open
- Target independent (e.g., Barefoot Tofino, NPU, FPGA)

Easy to develop/test/bug fix/proof future features more fast than ever and without hardware upgrade

Easy to optimize memory resources (especially for TCAM) for each use case

Can create SDK based on auto-generated P4 program access APIs (e.g., P4runtime)

npb.p4-16

npb.p4-16

- Port / Port Group
- Ingress/Egress Filter
- Forward/Load balance (normal, symmetric, resilient)/Replicate
- IEEE 1588 based Time stamping (nanosecond granurarity) on ERSPAN type III & INT (In-band Network Telemetry) spec
- H/W NetFlow-like generation*
- → Under field test on our production central office (Seoul region)

Software Stack

SD-Probe

Requirements

- Capture and parse raw packets
- Extract and generate metadata
 - NetFlow
 - XDR (for Telco)
- In high speed
 - 100Gbps / site

SD-Probe

Probe can achieve 80Gbps throughput and generate 5M flows/sec w/~100% utilization of 24 cores

- Utilize DPDK to pump up raw packet to applications
- Leverage RSS (Receive Side Scaling) to load balance packets to CPU cores assigned (CPU pinning)
 - -> this is heuristic

Lesson Learned from DPDK based Probe

- Can't achieve more than 100Gbps with deterministic performance
 - Depends on traffic pattern and CPU pinning config which is heuristic
 - Complex computation (e.g., regex, DPI)
- -> Programmable hardware chip (i.e., FPGA)

Agenda

- Introduction to Project TINA
- Software
 - Programmable Network Packet Broker (NPB)
 - DPDK-based Probes
 - DPDK-based Network Packet Capture (FloX)
- Hardware
 - First generation hardware design (T-CAP)
 - Disaggregation approach

First-gen Hardware Platform (T-CAP)

SKT Converged Appliance Platform

- Server board
 - Dual Intel Xeon E5-2600 v3 CPU (Haswell)
 - Up to 512GB RAM
 - 4X 2.5` SATA SSD
- Network switch board
 - Intel RRC (Red Rock Canyon) fixed function ethernet switching ASIC
 - x4 ethernet controller w/ PCIe gen3 (up to 200Gbps) connected to server part

https://www.slideshare.net/JunhoSuh/specification-skt-cna-ssx2rc-20160821 https://www.slideshare.net/JunhoSuh/ocp-summit-2016-transforming-networks-to-allit-network-with-ocp-and-open-networking

T-CAP Software Stack

Whitebox Switch for npb.p4-16

Barefoot Tofino (2T, 6.5T) w/ whitebox (BSP) vendor collaboration

KEY FEATURES 48x 25GbE + 8x 100GbE in 1RU chassis 2.0 Tbit fully P4 programmable Barefoot Tofino ASIC Supporting speeds from 1GbE to 100GbE First ever Barefoot Tofino based switch with built in time-synchronisation

Transparent and boundary clock support (1588v2)

Strong 8-core x86 CPU, 128GB SSD and 32GB of RAM

Implement any protocol or feature that your network requires with P4

Redundant, hot-swappable power and air-flow design for mission critical use-cases

KEY FEATURES 64x 40/50/100GbE in 1RU chassis 6.4 Tbit fully P4 programmable Barefoot Tofino ASIC Supporting speeds from 1GbE to 100GbE First ever Barefoot Tofino based switch with built in time-synchronisation

Strong 8-core x86 CPU, 128GB SSD and 32GB of RAM

Implement any protocol or feature that your network requires with P4

Redundant, hot-swappable power and air-flow design for mission critical use-cases

Junho Suh
(junho.suh@sk.com)

