OPTIMIZING SSD FORM FACTORS

JASON ADRIAN STORAGE HARDWARE ARCHITECT MICROSOFT AZURE

What a mess!

We can do better

What do we care about in a form factor:

- Physically large enough to meet required capacity
- Thermally capable to cool the device with desired airflow
- Serviceability easy to install and replace

Lessons learned:

- m.2 is challenging for thermals, serviceability, and capacity
- Messy carrier cards and thermal interface pads

Looking forward:

- SSD market is fragmenting into multiple formfactors, that have divergent design-in requirements
- E1.S (multiple widths), E1.L (multiple widths), E3 (multiple lengths and widths), U.2
- On the bright side, convergence on connectors!

Can we find commonality and reduce the proliferation in formfactors?

E1 vs E3

- E1 can fit in 1U or 2U platforms
 - Use orthogonal connector to avoid backplane
 - Optimized for 1U platforms
- E3 can also fit in 1/2U
 - Requires a backplane in a 1U
 - Optimized for 2U platforms

1U

Microsoft Azure's opinion

E1.S for performance and moderate capacity, E1.L for high capacity

E1.L with only 2 variants meets our needs

E1.S on paper looks good, but we have challenges

- 9.5mm isn't thermally capable enough to meet SSD performance requirements
- 25mm is too large to optimize front of server real estate
- Why not create a mid-size option that works for us, and others

Proposal

- What is the minimum width of E1.S that can handle 20-25W @
 35C ambient conditions?
- Enables highest front panel density
- Define a double width version for higher power needs
- Need to scope SCM

Decoding terminology & Simulation Strategy

What we did

We kept a consistent gap of 2mm Simulated several widths from 9.5 to 15mm

What is next?

Need to simulate with multiple vendors inputs Ensure we simulate future SSD needs (8, 16TB+) Storage class memory

Pitch

		All widths > 9.5 are asymetric			
Device Width (SSD)	9.5	11.5	12	14	15
Gap between SSDs	2	2	2	2	2
Effective pitch	11.5	13.5	14	16	17
Double width device	21	25	26	30	32

Building on E1

A chassis supporting E1 is simply a PCIe device container Can we leverage this work for other applications? Computational Storage? Accelerators?

For accelerators, I propose we find what works with E1.S widths, and only grow the height.... But let's focus on the SSDs first, then figure out accelerators

THERMAL SIMULATION

BRANDON GARY MICROSOFT AZURE

Thermal Analysis Boundaries

- Three 25mm SSD's with 27mm pitch set 83mm simulation domain.
- Mechanical assumption is that thinner SSD's will be placed in the domain if there's room between the domain wall and the drive itself.
 - Even if the drive has less of an air gap between the fin/bottom of the drive and the domain walls.

- Inlet airflow is held constant in simulation.
- Airflow velocity approach was to determine least amount of airflow required to hit the NAND composite temperature for the center drives powered to 20W workload target.
 - Next round of simulations will determine maximum airflow required to cool outer SSD's

Thermal Simulation Results

Assumptions

- SSD Power is scaled by percent t-rise for the NAND.
 - Reported SSD power is normalized to the NAND composite's temperature spec. The reported total device power is corrected as if it were operating at the NAND component's temperature spec.
 - Example: If result is above temperature spec, power is scaled down. If result is below temperature spec, power is scaled up.
- NAND temperature set's power limits due to it having the least temperature margin.
- Inlet temperature (35C), inlet airflow velocity, and domain area (83 x 33.8 mm²) are held constant.

Component	Component Temperature limit	SSD Module Power (W)	
SoC	100		
NAND	80	~19.88	
DDR	90	19.88	
Miscellaneous	N/A		

Maximum SSD Power vs. Width

- 15mm SSD's result in highest total domain power for simulations to date.
 - 15mm also meets 30W+ target.
- 25mm SSD has high power density, but lower overall domain power capacity.
 - 25mm is 12W higher in power density than 15mm, but 28W less in overall total domain SSD power.

Simulation notes: Airflow held constant. Input: SSD width; Output: composite temperatures.

Flat Plate SSD Pitch Study

- 9.5mm SSD width held constant.
 - Varied pitch in analysis.
- Pitch has little cooling improvement due to flat plate design.

+/- 25% Airflow Margin Between Drives

- Inlet airflow has been adjusted by 25% to address concerns about optimal system airflow or increased system impedance.
- Chose 15mm based on total domain power and ability to meet 30W thermal design power target.

Overall Thermal Learnings

- From 9.5mm to 25mm there is a point of diminishing returns for overall domain power utilization.
- Required airflow will vary between width's due to amount of energy needing to be cooled in a constrained domain.
- Discussions around target per drive LFM have been 70-100 LFM. Simulation shows an average of 73 LFM per drive when considering both individual SSD TDP and total domain power within mechanical constraints.