OPEN POSSIBILITIES.

Known-Good-Die is at the Heart of a Sustainable Open Chiplet Business Model

SERVER

Known-Good-Die is at the Heart of a Sustainable Open Chiplet Business Model

Roberto Rotili, Sr. Director Marketing & GM, Teradyne

Agenda

SERVER

- Importance of KGD
- Impact of KGD to the business model
- Challenges & Solutions for High & Predictable KGD

Impact of KGD on Chiplet Work Flow All About Scrap Cost

OPEN POSSIBILITI<mark>ES</mark>.

Impact of KGD on Chiplet Work Flow All About Scrap Cost

NOVEMBER 9-10, 2021

KGD Sensitivity to Chiplet Builder Business Model

High Level Chiplet-Builder Financial Summary

Builder	Value
Negotiated Chiplet Yield (KGD)	98%
Number of Chiplets in SiP	5
Total SiP Yield	90.4% *doe
Self Incurred Scrap Cost	\$4.61
SiP Cost	\$48
SiP Price	\$96
SiP Margin (no scrap)	50.0%
SiP Margin (w/ scrap)	45.2%
Scrap Cost Margin Impact	4.8%

Per SiP, the builder-incurred scrap cost is -\$4.60 (4.8% margin impact)

-1% change of KGD yield has a -2.5% impact on CM% for this scenario

An additional Chiplet reduces margin by -1%

OPEN POSSIBILITI<mark>ES</mark>.

KGD Sensitivity to <u>Chiplet Builder</u> Business Model

- If you are wearing the "Builder" hat then:
 - KGD should be as high & predictable as possible
 - Clause in contract to make Chiplet Provider responsible for scrap cost
 - Provide as many of the Chiplets yourself to reduce scrap cost (scrap cost = COGS ≠ ASP)
 - Balance "right" number of Chiplets so that you maximize the overall SiP yield
- Let's explore KGD Sensitivity to Chiplet-Provider Business model with a contractual obligation to pay for scrap cost for a yield excursion.

KGD Sensitivity to <u>Chiplet Provider</u> Business Model

High Level Chiplet-Provider Financial Summary

				Not Including Scrap				Including Scrap Cost		
Chiplet	Quantity	Chiplet ASP	Chiplet Cost	Chiplet Margin \$	Chiplet Margin %	Actual Yield	Negotiated Yield	Chiplet Based- SiP Scrap Cost	Chiplet Margin \$	Chiplet Margin %
FPGA	1	\$10.00	\$2.50	\$7.50	75%	96%	98%	\$48	\$6.54	65%
CPU	1	\$20.00	\$3.00	\$17.00	85%	96%	98%	\$48	\$16.04	80%
NFP	1	\$10.00	\$2.50	\$7.50	75%	96%	98%	\$48	\$6.54	65%
DRAM	2	\$4.00	\$1.40	\$2.60	65%	96%	98%	\$48	\$1.64	41%

2% yield excursion leads to:

-10% margin loss

-5% margin loss CPU: -2.5% margin loss per 1% delta in actual vs. negotiated yield

-24% margin loss
DRAM: -12% margin loss
per 1% delta in actual vs.
negotiated yield

KGD Sensitivity to <u>Chiplet Provider</u> Business Model

- If you are wearing the "Chiplet Provider" hat then:
 - KGD should be as high and predictable as possible
 - Quality contract that requires the "Provider" to pay for scrap costs is very risky (unless you can have predictable and high KDG)
 - If such a clause exists, then the bias will be for the Chiplet providers to sell high value Chiplet in the SiP
 - Sell untested wafers (instead of KGD) to Chiplet Builders and put test/risk on Builder's books.

Key to Business Model is a High/Stable KGD *Easier Said than Done*

• Chiplet test coverage significantly lower than a monolithic package part at the point when you deliver it to your customer:

	Wafer Sort	Final Test	Hot/Cold Testing	Interface Testing	System Level Test	Burn In
Monolithic Package	Yes	Yes	Yes	Yes	Yes	Yes
Single Chiplet	Yes	No	No	No - Die-to-Die interfaces lack signal strength to drive to-and-from ATE. Rely on BIST for D2D testing.	No – and more reliant on interaction with other chiplets.	No

Key to Business Model is a High/Stable KGD What Can Be Done

- Ways to improve KGD:
 - Add design redundancy to chip features that exhibit high fail rate so can repair-on-the-fly
 - add extra processing cores, extra D2D interface wires, extra memory banks, etc.
 - Test of sub-assembly of chiplets to minimize scrap cost at final-assembly
 - Pre-combinations of die (sub assemblies) from single supplier to reduce the multiplicative impact of yield

Call to Action

- Provide feedback (or share your own) on Chiplet Provider/Builder KGD Business Model on ODSA Google Drive
- What are other ways to have a high and predictable KGD
- What are clauses in quality contracts that exist today that might address KGD and scrap cost to promote an open Chiplet model

Thank you!

