

Synopsys Die-to-Die Test

Test Requirements and Synopsys SHS Support

Yervant Zorian Synoposys Fellow & Chief Architect December 18, 2019

Die-to-Die SerDes PHY Solution

USR/XSR SerDes

- Higher bandwidth, lower complexity & cost
 - 1.8Tbps/mm (56/112Gbps * 16 lanes)
 - Organic substrate (low loss), ~50mm reach
 - Standard bumps: 130µm to 170µm
- Higher latency & power
 - Higher latency (if with FEC)
 - 1 pJ/bit

DesignWare Die-to-Die SerDes PHY

Up to 112Gbps per lane for High Density USR and XSR links in MCMs

- Multiple technology nodes
 - ~1.8Tbps/mm aggregate unidirectional BW
 - Low power die-to-die connectivity (1pJ/bit)
 - Low latency and low BER
 - Up to 50mm reach for die-to-die connects in MCM
- 16-lane unidirectional TX and RX macros
 - PAM4 or NRZ encoding and wide data rate range for maximum flexibility
 - Support for C4 Bumps or optional Cu-pillar & μ -Bumps
 - Internal calibration and built-in loopback and diagnostic features for robustness and testability
 - Protocol agnostic Raw-PCS based parallel-side interface
- Complies with OIF-CEI 56G and 112G electrical specs for USR and XSR links

Synopsys[®]

SoC Level Hierarchical Test Management – DW SHS

Die-to-Die Testing Some High-Level Requirements

- Intra Die Test Management
 - For pre-assembly KGD test
 - Probe access may be limited due to micro bumps
 - Post-assembly to test dies and interconnect between dies
 - Test access needs to be plug-and-play between dies
 - Access from package pins via first/bottom die, then die-to-die via adjacent/next dies in the stack/chiplet assembly
 - Both serial test access and high-bandwidth test access (parallel or SERDES) are needed
 - Supported by IEEE test standards: 1149.1 (JTAG), 1149.10 (HSTAP), 1500/1687 (Core/IP) and 1838 (3D Test)
- Inter Die Test for post-assembly
 - Test through micro bumps or TSV interconnects
 - Static testing for shorts and opens, similar to boundary scan testing
 - At-speed testing is needed, for example far-end loopbacks using PHY protocols, or registered loopbacks
- PHY DFT
 - Die-to-die test support must be included with the DFT of the PHYs that are used for die-to-die communication
 - Micro bumps for die-to-die DFT connection must be part of the standard micro bump layout of the PHYs
 - PHYs must provide die-to-die access in conjunction with the SoC DFT in the dies

External Memory At-Speed Test & Diagnosis Through PHY

External Memory Test & Diagnosis Memory and logic dies: DDR or HBM 2

Access at ALL the dies

Inter Die Test

Package Test

Example Solution

IEEE 1838 Serial Test Access Ports

• PTAP

- Primary Test Access Port
- TCK, TRSTN, TMS, TDI, TDO
- PTAP Controller
 - TAP FSM connected to the PTAP signals
- STAP
 - Secondary Test Access Port
 - TCK_Sn, TRSTN_Sn, TMS_Sn, TDI_Sn, TDO_Sn
 - Connects to PTAP on next die
 - Controlled by PTAP controller and associated control and configuration logic

Figure 5: Example of a stack comprised of two semiconductor dies.

Example of IEEE 1838: SHS for Multi-Die Test

- The Synopsys SHS architecture can support multiple die configurations
 - Green TSVs and micro bumps are SHS network for IEEE 1838 standard's plug-and-play connections
 - SHS supports multiple 1838 die connections, as shown on the middle die, for access to the two top dies
- SHS PHY wrapper supports standard DFT (e.g., IEEE 1500 and 1838) for interconnect test and die-to-die access
- 1838 FPP can be shared with package pins and SHS PHY wrappers distribute FPP between dies, black TSVs and orange micro bumps

IEEE 1838 Standard Access to Multiple Dies Support though SHS Hierarchical Network Management

- IEEE 1838 standard has three major components
 - 1. Serial Test Port Architecture
 - 1149.1 Primary TAP (PTAP) and Secondary TAP (STAPs) on each die, for die-to-die access
 - 2. Die Wrapper Register (DWR)
 - PHY wrapper register for interconnect testing between die
 - 3. Optional Flexible Parallel Port (FPP)
 - Provides parallel test access to the dies from the package pins
- Die shown with four die-to-die PHYs (I0 through I3)
 - SHS hierarchical server network provides both die test and 1838 die-to-die access
 - PTAP is the SoC level TAP controller
 - SHS servers (S.n) in hierarchical network provide STAP access/control via PTAP and each die-to-die PHY
 - STAPs connect to associated PTAPs on adjacent/next dies
 - FPP is shared with die IO and distributed to next/adjacent dies via the PHYs

Thank You