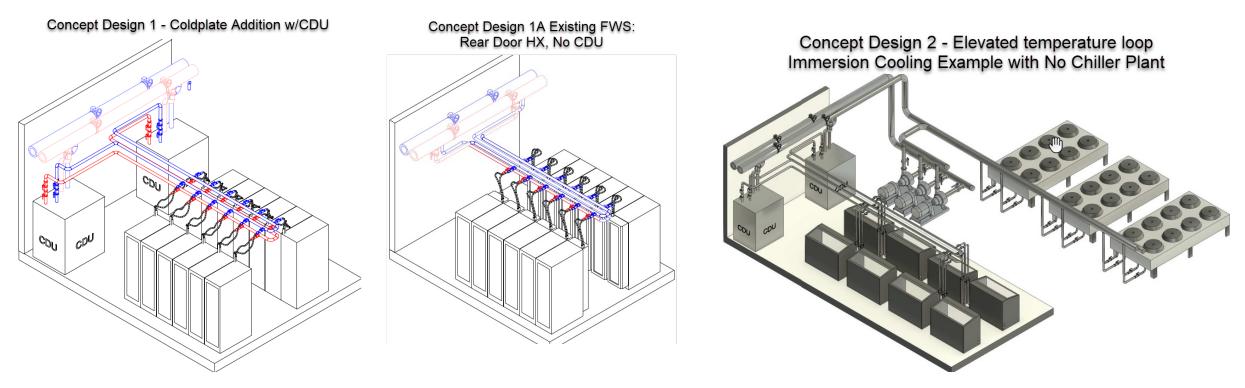
LIQUID COOLING REFERENCE DESIGNS

ADVANCED COOLING FACILITIES

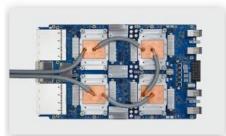
Compute Project®

ADVANCED COOLING FACILITIES


John Gross, P.E., ATD ACF, Co-Lead Owner - JM Gross Engineering

John Menoche ACF, Co-Lead Solutions Architect - Vertiv

OCP - ACF Mission: Develop global best practices; collaboration, common guidelines for adding liquid cooled ITE into data centers


SUSTAINABILITY IMPACT

Sustainability Factor	ustainability Factor ColdPlate		DoorHX					
Efficiency								
Device	Improves efficiency of CPUs	Improves efficiency of servers						
Facility	Improves efficiency of data center	Improves efficiency of data center	Improves efficiency of data center					
Metric paradox	PUE goes up	PUE goes up	PUE $\uparrow \downarrow$ (depend on measurement location)					
Performance								
Chip performance	Chip performance improves	Chip performance improves						
hard drive performance		HD Performance improves						
	Greater economizer use, less water use	Global operation - no refrigeration, water use	Greater economizer use, less water use					
Heat Reuse								
W32	Seasonal heat reuse applications	Seasonal heat reuse applications	Seasonal heat reuse applications					
W45, W45+	Advanced heat reuse applications	Advanced heat reuse applications	Advanced heat reuse applications					

REAL WORLD DEPLOYMENTS

Liquid Cooling Moves Upstream to ... missioncriticalmagazine.com

Water Cooling In Datacenters nextplatform.com

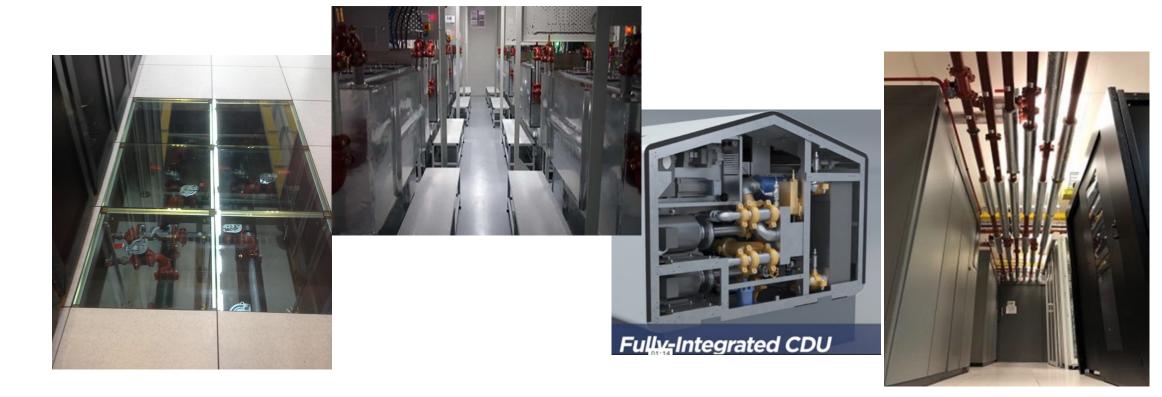
Liquid Cooling Moves Upstream ... missioncriticalmagazine.com

Why Liquid Cooling Data Centers is the ... dcs-datacenters.com

REAL WORLD DEPLOYMENTS

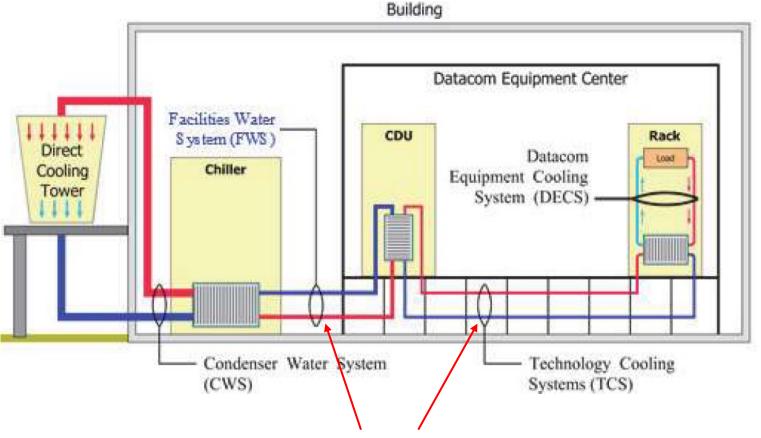
Liquid Cooling Moves Upstream to ... missioncriticalmagazine.com

Aquarius Server: Warm Water Cooling for ... datacenterfrontier.com



High Performance Computing Cent... electronics-cooling.com

REAL WORLD DEPLOYMENTS

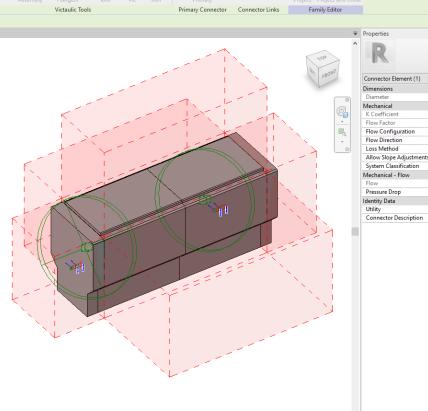


ACF/ACS BOUNDARIES

ACF Focus: Facility Water System

- Line of demarcation with ACS is critical
- ACS Reference Designs feed into ACF Workstream for ACF Guidance.
- Physical location of demarcation is dependent on ACS solution.

BIM CONTENT FOR PRODUCTS


Exterior Shape and Dimension without Detail (no perforations, bolts, etc)

Physical Attributes including clearances (able to be toggled off)

Mechanical Properties: Connection Size Flow Pressure Loss Inlet/Outlet Temperature

Electrical Properties: Voltage Ampacity Phase Power Factor

Search parameters				C
Parameter	Value	Formula	Lock	1
Constraints	I		*	í.
Default Elevation	0' 0"	=		
Construction			*	í.
Left Dry Zone (default)		=	1	1
Right Dry Zone (default)		=		
Electrical Engineering	;60		:	2
FLA	0.00 A	=		4
Phase	3	=	Π	
Power Factor	0.000000		- <u> </u>	
Voltage Nominal	0.00 V	=	1	
Dimensions		<u>I</u>	*	4
Depth	2' 10 15/16"			4
Front Clearance Actual	4' 6"	= = Front Clearance Input + 0' 6"		
Inlet Pipe Diameter	2"	= Hole clearance input + 0 0		
Outlet Pipe Diameter	2"			
Rear Clearance Actual	2' 7 1/16"	= = 10' - Depth - Front Clearance Actual		
Side Clearance Actual	2' 3 5/32"	= (12' - Width) / 2		
Side Dry Zone Width	0' 5 241/256"	= (12 Width) / 2		
Width	7' 5 11/16"	=		
Width Offset	3' 8 27/32"	- = Width / 2		
Mechanical	5 62//32		*	4
Cooling Coil EWT	-459.67 °F		*	4
Cooling Coil LWT	-459.67 °F			
Cooling Coil Water Flow	0.000 GPM			
Cooling Coil Water PD	0.000 gPW	=		
_	0.000 psi			J.
Electrical - Circuiting			*	
Number of Poles	3	=	<u> </u>	1
Other			×	4
Identity Data			*	
Type Image		=		
Keynote		=		
Model		=		
Manufacturer		=		
Type Comments		=		1
URL		=		
Description		=		
🥒 🎦 🎦 🗈 tE 🕸	- AI A+		e Lookup Tab	_

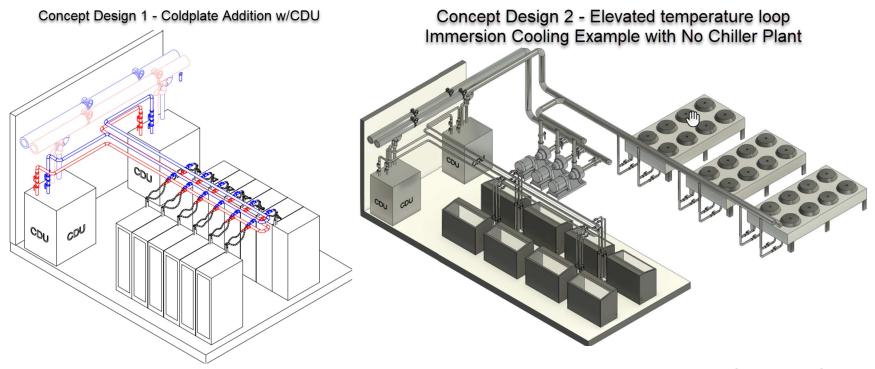
0' 2"

Preset

Specific Loss

0.000 GPM

0.000 psi


TCS-S

Hydronic Supply

🗸 谙 Edit Typ

ITE VENDORS – SHOW US YOUR MEGAWATT

PIPE SIZING AND CAPACITY

		ASHRAE 90.1-2019				ΔΤ						
Pipe Size		Table 6.5.4.6		Equiv Velocity		4	6	8	10	С		
		Table 0.5.4.0				7.2	10.8	14.4	18	F		
DIN	in	l/s	GPM	m/s	ft/s *		Max kW					
50	2	4.95	78	2.3	7.5	83	124	166	207			
65	2-1/2	<mark>6.94</mark>	110	2.2	7.4	116	174	232	290			
80	3	10.73	170	2.2	7.4	180	269	359	449			
100	4	20.19	320	2.5	8.1	338	507	676	845			
150	6	42.90	<mark>680</mark>	2.3	7.6	718	1077	1436	1795			
200	8	69.40	1100	2.1	7.1	1162	1742	2323	2904			
250	10	100.94	1600	2.0	6.5	1690	2534	3379	4224			
300	12	145.11	2300	2.0	6.5	2429	3643	4858	6072			
	Based on flow rates per ASHRAE 90.1-2019 Table 6.5.4.6 for Variable Flow											
	* - Values are based on standard weight carbon steel pipe dimensions, ASTM A53											

Represents typical design dT for chiller-based systems

Represents dT lower than typical design/operation of FWS systems

SLA CONSIDERATIONS - DEWPOINT

ASHRAE TC 9.9 Table 3.1 2021 Thermal Guidelines for Liquid Cooling										
		Typical Infrastructur	Facility							
Liquid			Secondary/	Water Supply Temperature,		Table 2: Dewpoint Limits Per ASHRAE				
Cooling Class		Primary Facilities	Supplemental			ASHRAE Class	Max Inlet Temp °C	Max Dewpoint		
			Facilities	°C (°F)a			Temp C	Temp °C		
						A1-A4		15		
W17	1	Chiller/cooling tower	Water-side	17 (62.6)		Recommended				
W27	ſ		economizer	27 (80.6)		Allowable Limits				
W32	`		Chiller or	32 (89.6)		A1	32	17		
	}	Cooling tower				A2	35	21		
W40	J		district heating	40 (104)		A3	40	24		
W45	}	Cooling tower	District heating	45 (113)		A4	45	24		
W+			system	>45 (>113)		В	35	28		
						С	40	28		
ASHRAE I) – Stay 2 degrees C abo	ASHRAE TC 9.9 © 2015			015					

Call to Action:

Get in Involved!

- OpenCompute Cooling Environments Project
 <u>https://www.opencompute.org/projects/cooling-environments</u>
 - Advanced Cooling Facilities
 - <u>https://www.opencompute.org/projects/advanced-cooling-facilities</u>

