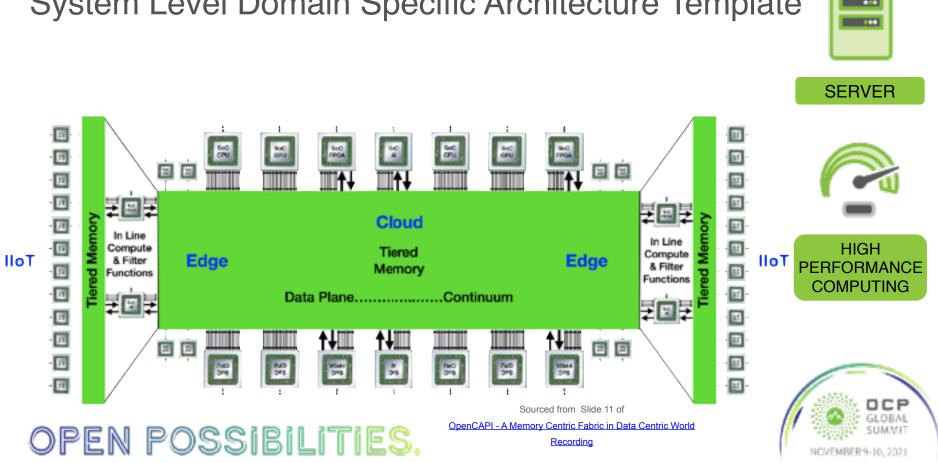
OPEN POSSIBILITIES.

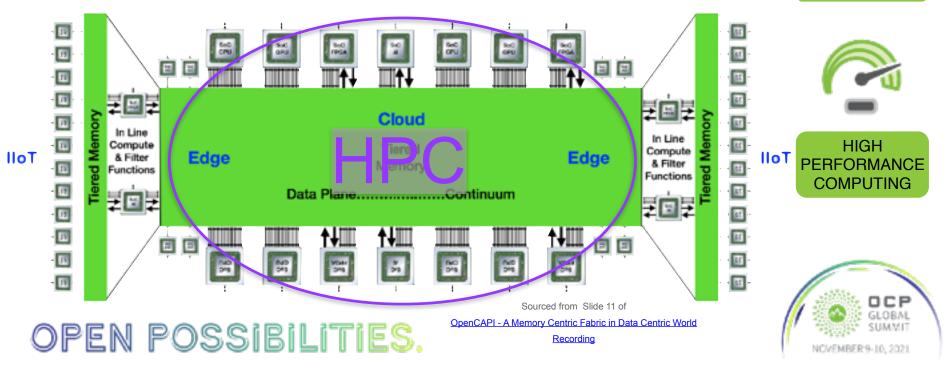
Introduction to the OCP HPC SubProject's HPCM (High Performance Computing Module)

Nomenclature : Read "Processor" as CPU and/or Accelerator


SERVER

Re-Inventing HPC Architectures for a "Domain Specific Architecture" Computing World

Allan Cantle, CEO, Nallasway



System Level Domain Specific Architecture Template

System Level Domain Specific Architecture Template

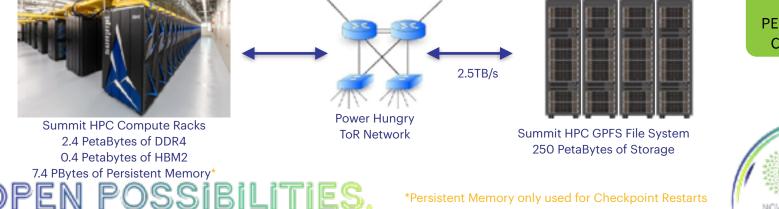
SERVER

HPC is increasingly Data Bound & Less So Compute Bound

OPEN POSSIBILITIES.

Heterogeneous w/ blurred Storage/Memory Boundaries

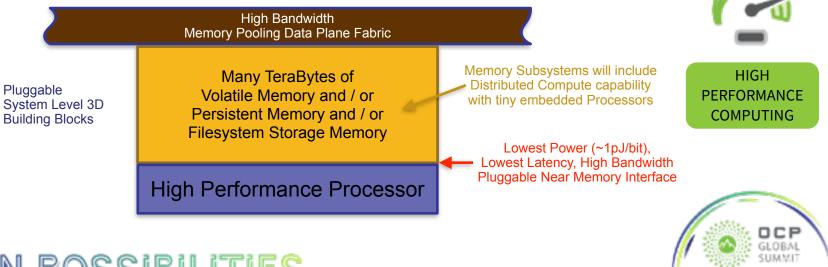
SERVER

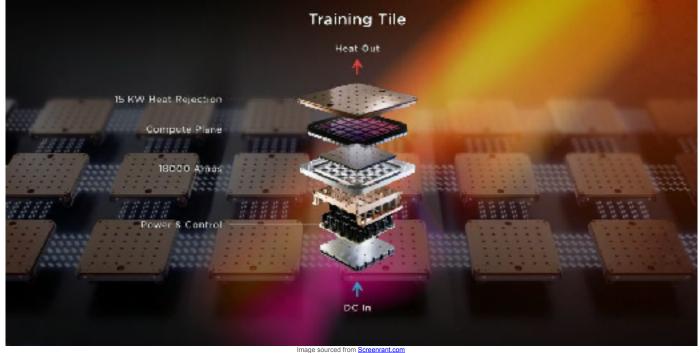


HIGH PERFORMANCE COMPUTING

Today's HPC Compute & Storage Challenge

- CORAL Summit HPC Machine example
 - 18 Minutes to Load 2.8PB Memory from Filesystem once!
 - 1.2 Days to Push ALL 250PB Filesystem thru Compute Racks!
- Need to Bring Compute, Memory and Storage much closer




Data Centric HPC Solution - Abstract View

- Tightly Couple Compute with ALL/ANY Memory Types
- Efficiently share Processors Near Memory with Other Processors

SERVER

If Tesla can "Re-Invent" then why not OCP? Training Tile **SERVER**

OPEN POSSIBILITIES.

....

We need to Innovate across Silos!

SERVER

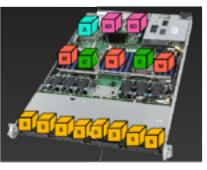
mage sourced from Stage 2 Planning Partners

Disaggregated Racks to Hyper-converged Chiplets

SERVER

Software Composable

Power Ignored Rack Interconnect >20pJ/bit


Poor Latency

Rack Volume >53K Cubic Inches Baseline Physical Composability

Power Baseline Node Interconnect 5-10pJ/bit

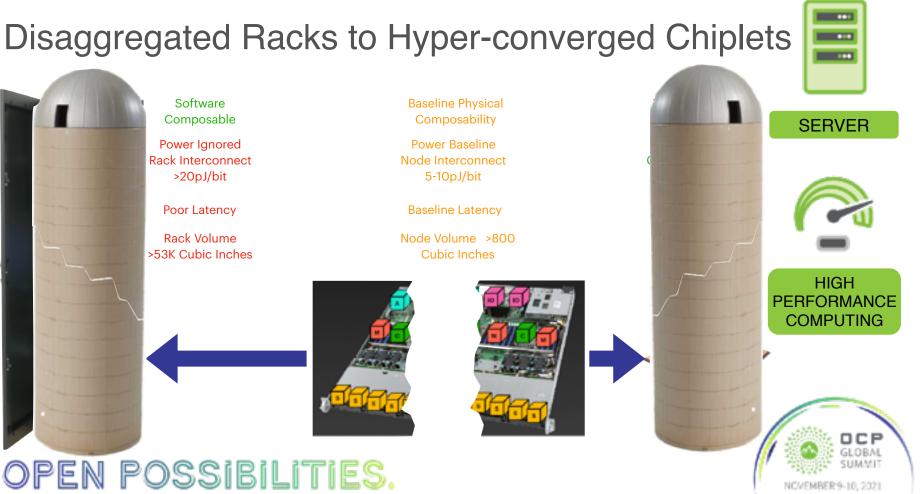
Baseline Latency

Node Volume >800 Cubic Inches

Expensive Physical composability

Power Optimized Chiplet Interconnect <1pJ/bit

Optimal Latency


SIP Volume <1 Cubic Inch

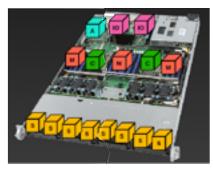
HIGH PERFORMANCE COMPUTING

NCVEMBER 9-10, 2021

HPCM brings the two Together

Software Composable **Power Ignored** Rack Interconnect

Poor Latency


>20pJ/bit

Rack Volume >53K Cubic Inches **Baseline Physical** Composability

Power Baseline Node Interconnect 5-10pJ/bit

Baseline Latency

Node Volume >800 **Cubic Inches**

Software & Physical Composability

Power Optimized Flexible Chiplet Interconnect 1-2pJ/bit

Optimal Latency

Module Volume <150 Cubic Inches **Expensive Physical** composability

Power Optimized Chiplet Interconnect <1pJ/bit

Optimal Latency

SIP Volume <1 Cubic Inch

SERVER

HIGH PERFORMANCE COMPUTING

OCP HPC Module, HPCM,

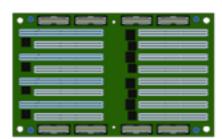
Populated with E3.S, NIC-3.0, & Cable IO

VCVEMBER 9-10, 2021

SERVER

Overview of OCP HPC SubProject's HPCM (High Performance Computing Module)

Allan Cantle, CEO, Nallasway


High Performance Computing Module, HPCM

- Modular, Flexible and Composable Module Protocol Agnostic!
 - Memory, Storage & IO interchangeable depending on Application Need
 - Processor must use HBM or have Serially Attached Memory

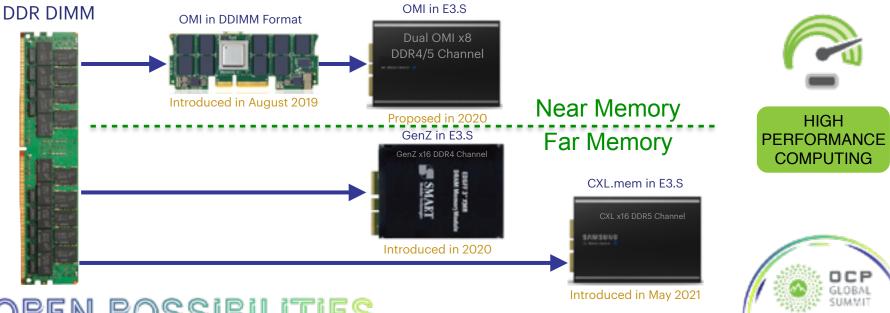


could Support Todav's Processors e.g. **NVIDIA Ampere** Google TPU **IBM POWFR10** Xilinx FPGAs Intel FPGAs **Graphcore IPU** PCIe Switches **Ethernet Switches**

POSSIBILITIES

HPCM Interconnect for all Processor / Switch types 16x EDSFF 4C/4C+ + 8x Nearstack x8 Connectors Total of 320x Transceivers

Example HPCM Bottom View Populated with 8x E3.S Modules, 2x OCP NIC 3.0 Modules, 4x TA1002 4C Cables & 8x Nearstack x8 Cables


HIGH PERFORMANCE COMPUTING

Memory IO is finally going Serial!

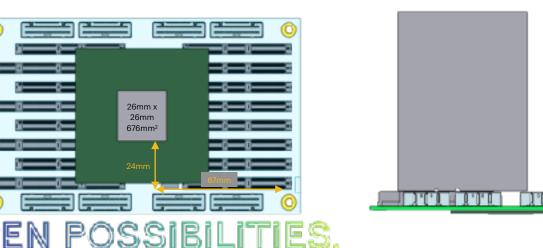
• Making Memory Composable with EDSFF E3.S like Storage & IO

OPEN POSSIBILITIES.

NOVEMBER 9-10, 2021

Modular Building Blocks Available Today

SERVER

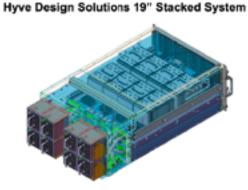

Network, Memory, & IO use <u>Common EDSFF Interconnect</u>

open possibiliti<mark>es</mark>.

Dense Modularity = Power Saving Opportunity

- Processor Die Bump to E3.S ASIC <5 Inches Manhattan Distance
 - Opportunity to reduce PHY Channel to 5-10dB, 1-2pJ/bit
- Enabling Low Power

Installing 8 HPCMs in OAI Chassis


Inspur 21" Co-Planar system

- 21 inch 3OU, 34.6" (800mm) depth
- 8*OAMs
- UBB: Combined FC+ 6 port HCM Topology

OPEN POSSIBILITIES.

- 4*PCIE Gen4 x16 Link to connect Hosts
- 4*PCIE Gen4 x16 Slots support 100G Infiniband or Ethernet for expansion

- 19 inch 6RU, 30 inch (762mm) depth
- 8*OAMs
- UBB: Combined FC+ 6 port HCM Topology
- 4*PCIE Gen3x16 slots for host uplink
- 12*PCIE Gen3 x16 slots for flexible IO

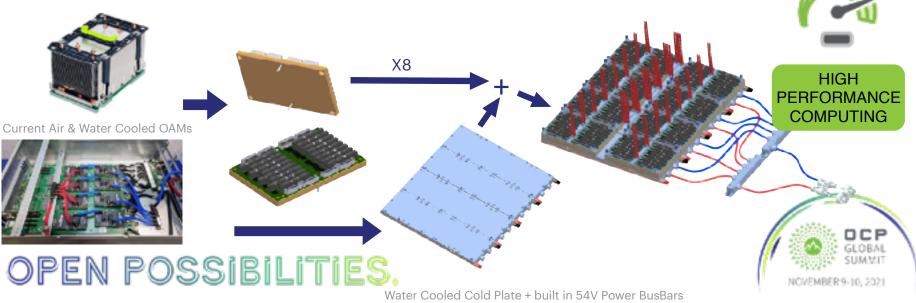
expansion

(PCIE interface will be revised to Gen4 in next release.)

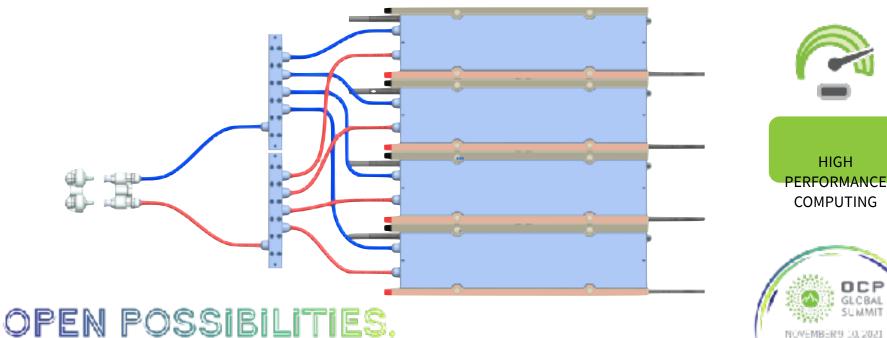
ZT Systems 19" Co-Planar System

- 19 inch 4RU, 34.6" (880mm) depth
- 8*OAMs
- UBB: 8-port HCM topology
- 2*PCIE Gen4 x16 Uplinks for Multi-Host
- 4*PCIE Gen4 x16 Slots
- 4*2.5" NVME hot plug drives in front

SERVER

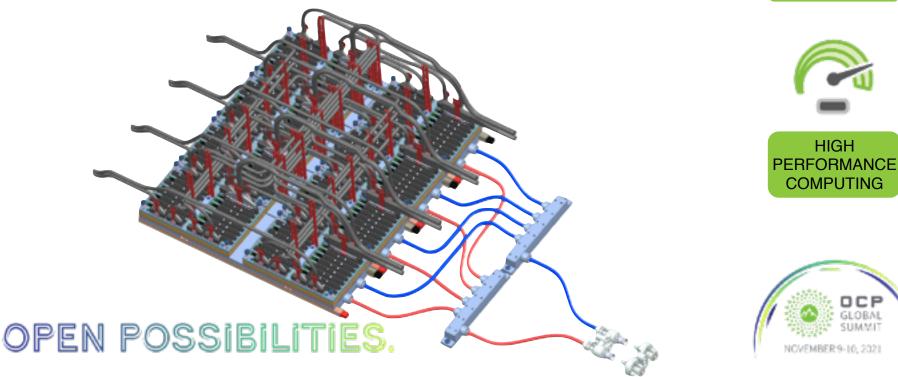


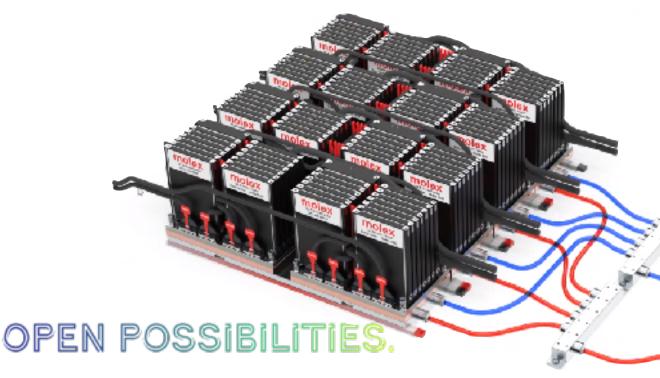
HIGH PERFORMANCE COMPUTING


Re-Architect - Start with a Cold Plate For High Wattage HPCM Modules

- Capillary Heatspreader on module to dissipate die heat across module surface area
- · Heatsinks are largest Mass, so make them the structure of the assembly
 - · Integrate liquid cooling into the main cold plate

Cold Plate from Backside


• 54V Power Bus Bars shown - Powering HPCMs


Add Topology Cabling - No Retimers

Fully Connected Topology + Connections to HIB & QDD IO

Add E3.S and NIC 3.0 Modules

• Pluggable into OCP OAI Chassis

SERVER

How HPCM provides Efficient & Flexible Interconnect to support increased Fabric Speeds

Allan Cantle, CEO, Nallasway Tang Junyan, Mahesh Bohra, Dan Dreps, IBM Bob Dillman & Gus Panella, Molex

Challenges of Compute Interconnect

- Growing demand for Faster and wider Interconnect
 - IO increasing % of Total Power
 - More IO = More Complex PCBs
 - PCB Losses increase
 - Shorter traces
- Retimers increasingly required
 - Add latency, Power, cost, & consume real estate
 - Zero return on investment!

OPEN POSSIBILITI<mark>ES</mark>.

Retimers and Active Cables increasingly required as Fabric Speeds increase

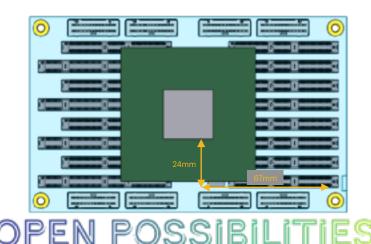
OAL

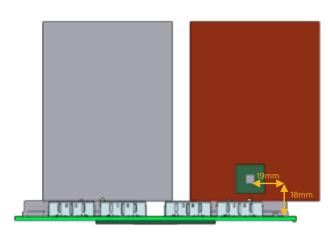
CIAM1

CIAM2

CIAM5

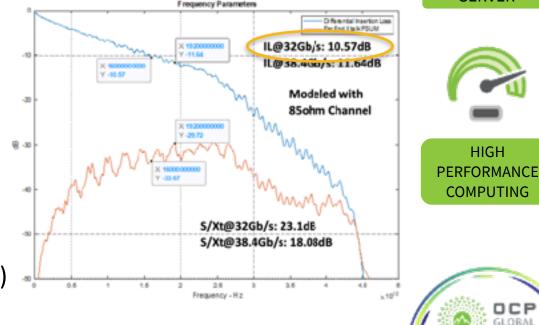
CAM6


HPCM Interconnect Innovation


- HPCM Increases System Level Density
 - 3D Construction brings Compute, Media & IO Closer together
- Leverage TA-1002 Interconnect to support Media & IO Modules as well as Direct IO
- Leverage Nearstack-PCIe for motherboard-less cabled Fabric Topology Interconnect

HPCM Processor to Media/IO Module

- Processor to Media / IO Module Manhattan Distance
 - 128mm (<5 Inches) worst case
 - ~10dB Channel with opportunity to reduce IO Power
- Possible further improvement using HPCM as Processor Substrate



SERVER

HPCM Processor to Module Interconnect With Packaged Processor and Controller Chips

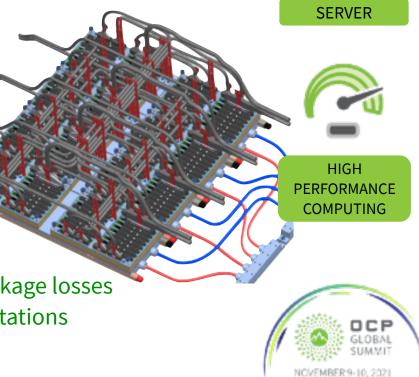
Channel based on OMI Module:

- GL102 pkg wiring (30mm)
- Module Via S12
- 24mm Pin Area Wiring
- Meg6 Open Area (67mm)
- DIMM PCB Via S12
- DIMM Conn (C2)
- Meg6 Open Area (37mm)
- E3.S Controller Package (Nominal PCB and PKG corner)

Insertion Loss allocation Table - Conservative

With Packaged Processor and Controller Chips

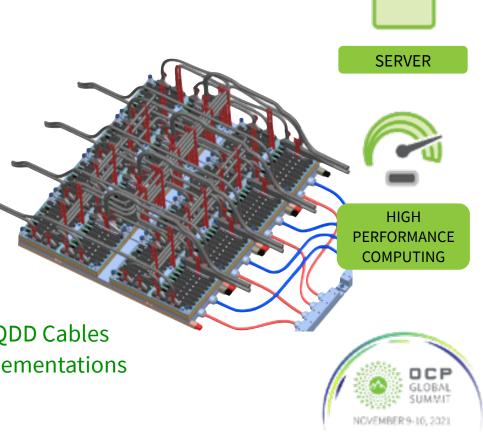
Channel Section	Loss @ 32Gb/s	Comments
GL102 package wiring (30mm)	2.8dB	
Module Via S12	1dB	Assume 1.6mm via length & 15mil back drilled stub
Meg6 - 24mm Pin Area Wiring	1.2dB	Conservative assumption with 30mm package wiring & 24mm PCB zig-zag wiring under package
Meg6 - Open Area PCB Trace (67mm)	2.6dB	
DIMM PCB Via S12	0.9dB	Assume 1.6mm via length & 15mil back drilled stub
DIMM Conn (C2)	1dB	
Meg6 - DIMM Open Area (37mm)	1.4dB	
E3.S Controller Package	0.4dB	
Total Channel	11.3dB	Measured channel difference due to impedance discrepancies & behavior


Insertion Loss allocation Table - Conservative Derived with Bare Die Processor and Controller Chips

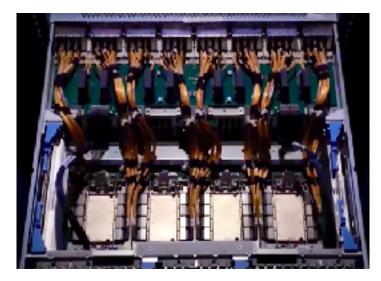
Channel Section	Loss @ 32Gb/s	Comments
Module Via S12	1dB	Assume 1.6mm via length & 15mil back drilled stub
Meg6 - 24mm Open Area Wiring	1dB	
Meg6 - Open Area PCB Trace (67mm)	2.6dB	
DIMM PCB Via S12	0.9dB	Assume 1.6mm via length & 15mil back drilled stub
DIMM Conn (C2)	1dB	
Meg6 - DIMM Open Area (37mm)	1.4dB	
Total Channel	7.9dB	Empirical estimate only

OAI Node Fully Connected Topology Module to Module Interconnect Topology SERVER Assume 112G PAM4 Fabric Speed • HPCM Loss, w/ packaged Proc ~8.5dB Longest Cable - 12 Inches ~ 5.8dB • 34awg Cable Loss = 0.37 dB/inch Connector Loss = 0.7dB/ea (typ) HIGH PERFORMANCE Total Channel Loss Estimate COMPUTING • Proc to Proc = 8.5 + 5.8 + 8.5• ~22.8dB • 7.2dB Spare on a 30dB 112G channel OPEN POSSIBILITIES.

OAI Node HPCM to HIB Interconnect


- HPCM TA-1002 to HIB Examax Backplane
- 64G PAM4 CXL/PCIe G6 Fabric Speed
- HPCM Loss, w/ packaged Proc ~8.5dB
- Longest Cable ~12 Inches
 - TA-1002 Loss + PCB fingers ~ 2 dB
 - 34awg Cable loss = 0.37 dB/in
 - Backplane Loss ~ 0.7 dB
- Total Proc to HIB Backplane Loss
 - ~ 8.5 + 2 + 4.4 + 0.7 = 15.6dB
 - 14.4dB spare for HIB PCB and Switch package losses
 - Retimerless compared to UBB implementations

OAI Node HPCM to QDD Interconnect


- HPCM Nearstack to QDD Fabric IO
- Assume 112G PAM4 Fabric Speed
- HPCM Loss, w/ packaged Proc ~8.5dB
- Longest Cable ~17 Inches
 - Connector Loss ~ 0.7 dB
 - 34awg Cable Loss ~ 0.37 dB/in
 - QDD Loss ~ 2.5 dB
 - Total Proc to QDD Loss
 - ~ 8.5 + 0.7 + 6.3 + 2.5 = 18dB
 - 12dB spare May Support Passive QDD Cables
 - Retimerless compared to UBB implementations

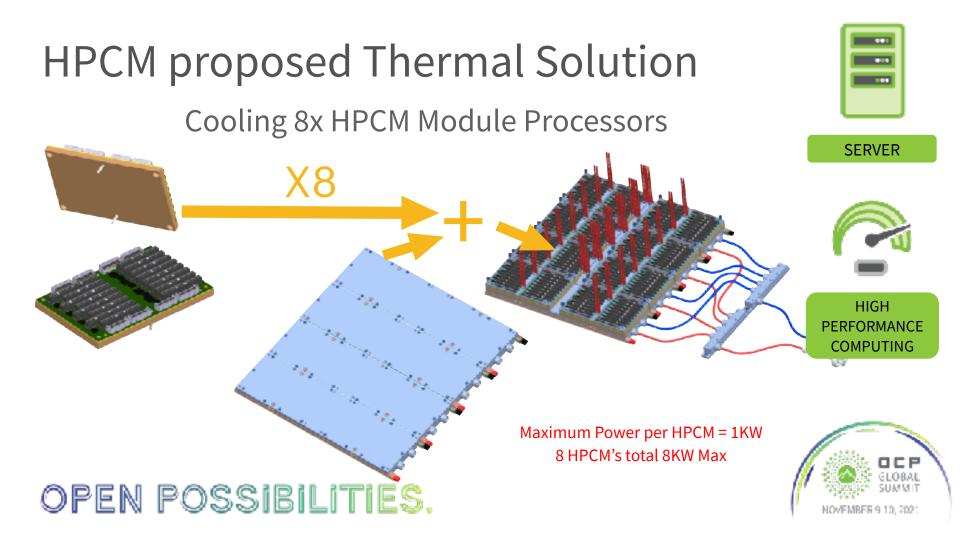
OPEN POSSIBILITI<mark>ES</mark>.

Cabled Solutions are reliable

• IBM's High Reliability E1080 Server

OPEN POSSIBILITIES.

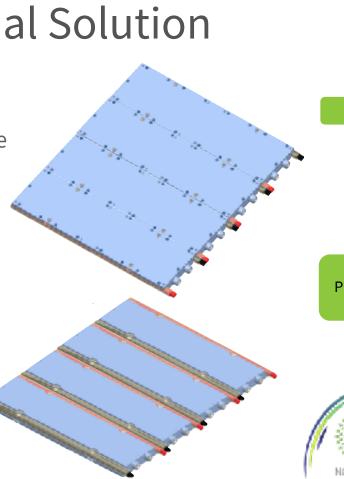
HIGH PERFORMANCE COMPUTING


SERVER

How HPCM's Thermal Management Cold Plate solution turns traditional approaches on their head

Chris Chapman, Boyd Corporation Bob Dillman, Molex Allan Cantle, Nallasway

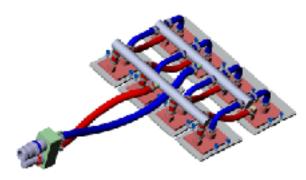


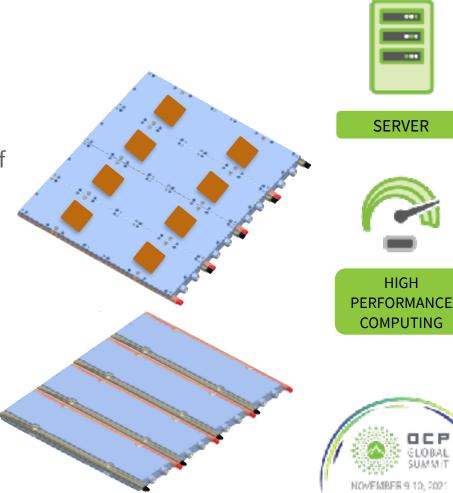

HPCM proposed Thermal Solution

- Thermal Heat Spreader
- Required to Normalize Different HPCM Modules for mating to the main cold plate
- Cavities in Heat Spreaders required for surrounding components, primarily PSUs
- Necessitates 2 Thermal Interfaces
 - Silicon to Heat Spreader
 - Heat Spreader to Cold Plate

HPCM proposed Thermal Solution

- Water Cooled Cold Plate
- Provides HPCM Mechanical Infrastructure
- Cold water to each HPCM site

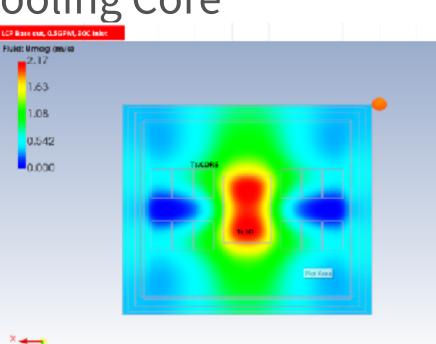



HIGH PERFORMANCE COMPUTING

Cold Plate Feasibility

 A single cold plate concept that delivers power to OAM modules utilizing 8 mesochannel "cooling cores" should perform similarly to a cooling loop array if each of the 8 OAM interfaces are independently fastened to the cold plate

Evaluate "Cooling Core"


2.171.63

1.08

0.542

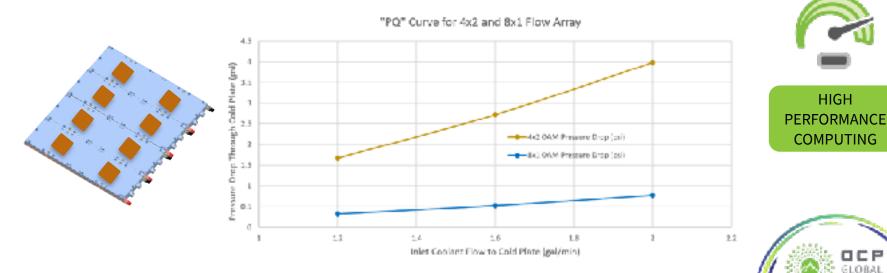
0.000

- Initial CFD analyzed the new form factor required
- Similar performance was obtained compared to a traditional OAM module cold plate

Out (S): T (C)

44.3

42.0


39.8

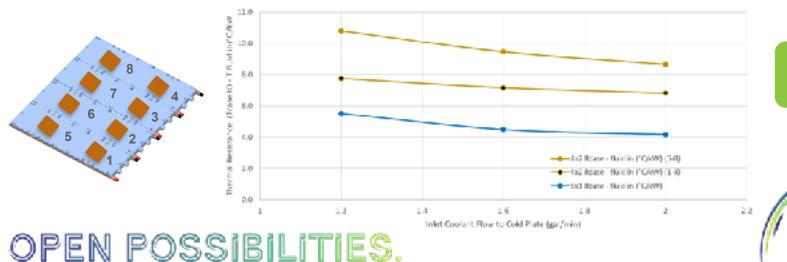
37.5

35.3

4x2 and 8x1 Flow Network

- Two flow network models were developed for the cold plate assembly
- The all parallel 8x1 array shows the lower pressure drop as shown in the 'PQ' curve

OPEN POSSIBILITIES.



HIGH

COMPUTING

Cold Plate Thermal Performance

- The thermal resistance "RQ" curves are shown and the 4x2 array is split into two curves; one for parallel cores 1-4 and another for 5-8 which are in series in order
- The 8x1 resistance is lower however the cores 1-4 in the 4x2 will run cooler than any 8x1 core

Summary

- Initial study indicates that a cold plate with meso-channel cooling cores will achieve the necessary cooling required as compared to conventional cooling loops
- Further study is recommended as additional electro-mechanical and packaging features can be incorporated into the cold plate as we now understand the keep out area necessary for cooling

OPEN POSSIBILITIES.

COMPUTING

Air Cooling 128x E3.S Modules

- Up to 128x E3.S Modules @ 25W each
- Maximum Total Power 3.2KW
- Proposed airflow from bottom to top of E3.S modules
- Large Cooling surface area per module
- Baffling and Managing Airflow challenge

OPEN POSSIBILITIES.

HIGH PERFORMANCE COMPUTING

Call to Action

- Please help bring HPCM to reality by Joining the OCP HPC Sub Project
- We are also seeking Funding in order to build PoCs to prove out Concepts
- Where to find additional information (URL links)

Project Wiki with latest HPC Charter and Meeting Recordings : <u>http://www.opencompute.org/wiki/HPC</u>

Mailing list: <u>https://ocp-all.groups.io/g/OCP-HPC</u>

Meeting Calendar : <u>https://www.opencompute.org/projects/high-performance-computing-incubation</u>

Thank you! Any Questions?

