

OCP - ODSA Project

Commercialization Use Case

Blue Cheetah Analog Design

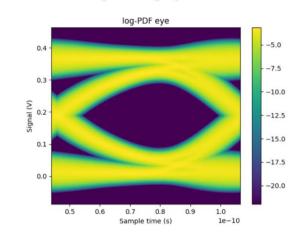
Bunch of Wires Interface Solutions

Elad Alon

Why ODSA at Blue Cheetah

• We support chiplet die-to-die (D2D) solutions that foster the broadest possible use

cases and applications


- ODSA BoW is the first open standard that:
 - Supports organic laminate packages
 - Supports packaging-independent PHY definition
- Blue Cheetah (BCA) has been heavily involved in the development of the BoW PHY specification
 - BCA began participating in BoW PHY and test-chip meetings in early 2021
 - BCA is one of two companies providing test-chips to demonstrate BoW PHY interoperability
 - Technically leading the BoW PHY WG and heavily participating in the BoW link layer WG

	Unterminated	Source-Terminated	Doubly Terminated	
TX DC Term.	As required to meet	36 Ω - 50 Ω	36 Ω - 50 Ω	
	TX rise-time	(0.72 - 1.0 Z _{chan})	(0.72 - 1.0 Z _{chan})	
RX DC Term.		*	50 Ω - 69 Ω (1.0 - 1.38 Z _{chan})	
Within-Slice DC Term. Matching	-	$\sigma = 1.333\%$ (8% over 6 σ)	$\sigma = 0.667\%$ (4% over 6 σ)	

Table 8. Transmit and Receive Termination Resistance Requirements vs. Mode

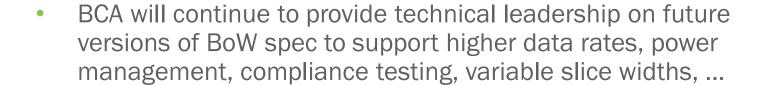
	BoW-256	BoW-128	BoW-128	BoW-64 or BoW-32	BoW-64 or BoW-32
	Any Termination	Doubly Terminated	Source- or Un- Terminated	Doubly Terminated	Source- or Un- Terminated
V _{err,det,RX}	40 mV	40 mV	100 mV	65 mV	150 mV
V _{err,tot,RX}	75 mV	75 mV	150 mV	100 mV	200 mV
t _{err,det,RX}	32% T _{bit}	32% T _{bit}	32% T _{bit}	28% T _{bit}	28% T _{bit}
t _{err,tot,RX}	40.5% T _{bit}	40.5% T _{bit}	40.5% T _{bit}	36.5% T _{bit}	36.5% T _{bit}

Table 12. Receiver Voltage and Timing Requirements for BoW-256

ODSA Use Case at Blue Cheetah

- Blue Cheetah is offering a family of BoW-based D2D solutions:
 - Organic laminate or advanced packaging, 55μm to 130μm bump pitch
 - 0.3 0.5pJ/bit, 2 16Gb/s/line, <1e-20 raw error rate,
 <2ns latency, up to 25mm reach
 - Low latency link layer / controller supports die disaggregation of AMBA buses

- Silicon tapeouts in progress
 - 12nm test-chip with 0.5Tb/s/mm / 9 Tb/s/mm² bandwidth density on 4-2-4 organic laminate package
 - Will be used in ODSA interop package test vehicle
 - 5nm PHYs embedded into multiple customer chiplets



What is Next for ODSA at Blue Cheetah

Complete BoW link layer specification targeted for summer 2022

 BCA will tapeout BoW PHYs in 3 more advanced FinFET process technologies by end of Q1 2023

Questions