Open. Together.
F16: the next-generation fabric

Alexey Andreyev, Network Engineer
Facebook, Inc.
Classic Facebook Fabric

- Server Pods: racks
- 4 Parallel Spine Planes
- Edge Pods: uplinks
- Up to 1:1 Racks:Spine (non-blocking)
- Practical so far: 2:1
- Links: 100G, Fiber: SMF
- Routing: BGP
Unit of Deployment: Pod

- **Server Pod**: 48 racks
- 4 x 100G per rack (400G)
Fabric Spine Planes

- **Scalability** - without large boxes
- **Capacity** - load balanced between and within the planes
- **Reliability** - contained failure domains and large-scale ops
- **Flexibility** - independent planes
Data Center Region

- **Fabric Aggregation (FA):** inter-building fabric of fabrics
- **Up to 3 large buildings** (fabrics)
- **100Ts level** of regional uplink capacity per fabric (max)
Growing pressures

- Expanding Mega Regions (5-6 buildings) = accelerated fabric-to-fabric East-West demand
- Compute-Storage and AI disaggregation requires near-Terabit capacity per Rack
- Both require larger fabric Spine capacity (by 2-4x) ...
DC network – a system with many parameters

- Bandwidth capacity
- Scale and scalability
- Topology and routing
- Regional composition
- Lifecycle: deployment and retrofits
- Automation and management

- Servers and Services
- Switch ASICs
- Optics and link speeds
- Power and cooling
- Fiber infrastructure
- Physical space

Timelines: need by vs. technology availability and development

2019, deployed

Open. Together.
Optics

- Concerns: 400G availability @ scale
- We start large - no time for new tech to ramp-up
- Risky dependency on bleeding-edge tech
- High cost of early adoption
- Interop for upgrade / retrofit paths
- Large-scale ISP and OSP structured fiber plants
Networking power & efficiency

- Node **radix-128** - best fit at our scale
- Achieved by building intra-node topologies from radix-32 sub-switches (ASIC+uServer)

![Diagram showing network architecture with nodes and Switches](image)

- 4 down: to Rack Switches
- 4 up: to Spine Switches

Backpack Fabric Switch (FSW): a Clos of 12 sub-switches
Networking power & efficiency

12 small-radix subsystems - Ok @100G
At higher speeds + growing scale the efficiency starts declining ...

Backpack Fabric Switch (FSW): a Clos of 12 sub-switches
Networking power & efficiency

- This is 48 FSW ASICs per Pod
- Also, multi-chip Spine-tier nodes
- +Optics dependency for every next generation
Networking power & efficiency

Alternative internal topologies (e.g., butterfly) – still not much better with 75% capacity protection (3+1)
What’s Next?

with 4 x 128p multi-chip 400G fabric switches

48 FSW ASICs + Control Planes per Pod

How would we achieve the next 2-4X after 1.6T?

⇒ Adding more fabric planes on multi-chip hardware = too much power...

⇒ Increasing link speeds = would need **800G** or **1600G** optics in 2-3 years...
Introducing F16 fabric

→ from 4 x 128p multi-chip 400G fabric switches

48 FSW ASICs + Control Planes per Pod

FSW1 FSW2 FSW3 FSW4

→ to 16 x 128p single-chip 100G fabric switches

16 FSW ASICs + Control Planes per Pod

4 x 400G = 1.6T uplink per rack

sample Server Pod

16 x 100G = 1.6T uplink per rack
Introducing F16 fabric

- Same ASIC building block as multi-chip candidate: **Broadcom Tomahawk-3**
- Same rack uplink bandwidth capacity as 4 x 400G: **up to 1.6T per TOR**
- **3X+ less** chips and control planes = TCO and Ops efficiency
Introducing F16 fabric

- **2X+less** power/Gbps than 100G F4 fabrics
- Mature and available optics, instead of high-volume bleeding edge ramp-up: **OCP 100G CWDM4**
- Realistic **next-steps scalability:**
 - optimized for power in current and **future** generations
 - 200G or 400G optics as the way to achieve the next 2x or 4x

4 x 400G = 1.6T uplink per rack
16 x 100G = 1.6T uplink per rack

Open. Together.
F16 fabric design

- Up to **16-plane architecture**: achieving 4X capacity with 100G links
- Up to **1.6T** capacity per rack
- **Single-chip** radix-128 building blocks
- Locked Spine scale at **1:33:1** from start (36 FSW-Spine uplinks for 48 Racks/Pod)
- **No Edge Pods** – replaced with direct Spine uplinks to new large-scale **Disaggregated FA**
F16.8P: 8-plane variant

- Physical Infra and fiber designed and built for **full F16**
- Starting number of parallel planes: **8**
- **800G** capacity per rack (8 x 100G)
F16 region evolution: HGRID

- Edge Pods → direct Spine-FA uplinks
- No device is big enough to mesh F16 fabrics - disaggregated solution required
- Goal: mega-region - beyond 3 fabrics

Each F16 fabric = 576 Spine Switches (SSWs)
F16 region evolution: HGRID

- **HGRID** - connecting slices of matching Spine Switches across F16s

- **Partial Mesh** = additional routing and reachability considerations

1 slice = all Spine Switches (SSWs) of the same number
F16 region evolution: HGRID

HGRID entity composition:

- 4-16 uplink units (UUs) - not shown
- 36 downlink units (DUs) - slices

HGRID: 36-slice Disagg-FA architecture
F16 mega-region

- Sample 6-building region with full-size F16 fabrics
- **Petabit-level** regional uplink capacity, per fabric
- Evolution of our **Fabric Aggregator** with new building blocks
- **BGP** routing end-to-end, designed for reliability, fast convergence, FIB fit
Simpler and Flatter

- Over **3X less** switch ASICs and control planes in fabric
- **2.25X less** tiers of chips in the topology

Regional Fabric Aggregator (FA)

Edge Switch

Spine Switch

Fabric Switch

Top of Rack Switch (TOR)

F4

- 4 planes x 9 chip tiers
- 12 chips/fabric node

24..48 chip+

Open. Together.
Shorter paths

→ Up to **2X less** host-to-host network hops intra-fabric

→ Up to **3X less** host-to-host network hops intra-region

→ More consistency, less queuing points
Building blocks

- **Minipack**
 128 x 100G, 4RU, Tomahawk-3, ~1.3kW

Single-chip, uniform building block

- **Regional Fabric Aggregator (FA)**
- **Spine Switch**
- **Fabric Switch**

F16
- 16 planes x 4 chip tiers
- 1 chip/fabric node

- **Flat FA-DU tier**
 - 4 planes x 9 chip tiers
 - 12 chips/fabric node

- **Rack switches:**
 - **Wedge-100S**

NETWORKING

Open. Together.
Building blocks

Minipack
128 x 100G, 4RU,
Tomahawk-3, ~1.3kW

All fabric tiers and roles

Rack switches: Wedge-100S

Open. Together.
Building blocks

- **Facebook Minipack**
 - FBOSS

- **Arista 7368X4**
 - FBOSS or EOS

Single-chip, uniform building block
modular PIMs = interface flexibility
To summarize

- **F16 fabric**: achieving 4X bandwidth at scale, without 4X faster links
- **8 planes, 16 planes**: new dimension of scaling
- **100G links**: not forced to adapt next-gen optics from early day1
- **Power savings**: both now and in the future iterations
- **Next steps**: clear path to the next 2-4X – on specific tiers or all-around
To summarize

- **Simpler**: single-chip large-radix systems improve efficiency
- **Flattened**: 3X+ less ASICs, 2.25+X less tiers, 2-3X less hops between servers
- **Minipack**: one flexible and efficient building block for all roles in fabric
- **HGRID**: disaggregated aggregation - scaling the multi-fabric regions in both bandwidth and size
Open. Together.

OCP Global Summit | March 14–15, 2019