

[H/W Power Capping with Cloud Management] Super Apps Performance SLA

Speakers: Justin Song @ Alibaba Edmund Song, Nishi Ahuja @Intel

Contributors: Hao Zhu, Guan Wang, Xiaolin Meng @ Alibaba Feng Jiang, Mohan J. Kumar, Xiaoguo Liang, John Leung @ Intel

PLATINUM

Agenda

- Alibaba Power Capping with Performance SLA
- Fine Granularity Power Management Knobs
- Redfish Adoption and Practices
- Call to Action

MANAGEMENT

Case Studies

Alibaba Power Capping with Performance SLA

Case Studies

Alibaba Power Management Architecture

Open. Together.

Working with Apps

Platform

Region/AZ

Cluster

Power Capping Triggering

MANAGEMENT

Open. Together.

Case Studies

Performance SLA

Туре	Target		
Availability			
Service delay	1s		
	30s		
Models coverage	Based on spec & test re		
Racks coverage	Based on spec & test re		
Power watermarks	Defined by apps & platf		
Capping accuracy	5%		
Priority	Defined by apps		
Fmin	Defined by apps Lifted by Al		
Granularity	By core (CPU), rank (mem), and device (storage		
Capping - DVFS	Minimal performance im		
Capping - CCx	Minimal latency impa		
In-Band	supported		
Out-of-Band	Partially supported		
Thermal watermarks	Defined by apps and plat		
Failover	Unconditional capping, auto capping, or S5		

DCP SUMMIT

M	IA	N	A	G	E	V

Preventing	performance
downgrade	

DVFS: Dynamic Voltage Frequency Scaling CCx: Core C-States

Case Studies

	Note	
	Align w/ apps	
	Local	
	Global	
esults		
esults		
tform		
	Low priority nodes first capped	
	Anytime higher than Fmin	
), link (IO) e)		
mpact	Defined by apps	
act	Defined by apps	
d		
atform		
tonomous		
	<u> </u>	1 🗍

Results – Examples

Scenario: high priority instances performance guaranteed with low priority instances capped

Case Studies

Fine Granularity Power Management Knobs

MANAGEMENT

Case Studies

Cloud Power-Performance Requirement

- Rack density
- Utilization of provisioned resource

Capex Optimization

- Convergence between infrastructure plane and resource plane
- Hardware intelligences into resource scheduling and orchestration

SLA and Reliability

- **Power-Performance** proportionality(e.g. SLA matched energy efficiency)
- Performance-per-watt efficiency

Opex Optimization

Fine Grain Platform Power-Performance Knobs

MANAGEMENT

Intel Practices in Cloud Power-Performance Optimization

MANAGEMENT

HW Telemetry Awaress Scheduling

Workload PnP Analytic and Simulation

Proprietary Cloud OS

NIC, Storage	Open RMC	DC Power
	Smart BBU	DC Cooling
	Rack & DC Facility	

Redfish Adoption and Practices

Case Studies

API Requirement in Cloud Power-Performance Optimization

- Interoperability Infrastructure plane vs. Resource plane, server vs. facility (rack, IDC) etc.
- Consistent API model for In band interface and Out of band interface Support runtime configuration and cloud scale deployment

ture and Orchestration)			
Redfish A	\PI	Redfie	sh API
Open RM	С	Power System	Cooling System
Rack, Rack	BBU e plane		C
and scalable Redfish model			

Redfish Practices

- Unified power control API model to support hierarchical power capping (platform, rack, cluster)
- Consistent model to support RAPL and Smart BBS based peak shaving.

Orchestration need insight of power redundancy of managed system for intelligent scheduling policy

Redfish based API reduce deployment complexity of data center power management

Call to Action

Case Studies

Call to Action

- Performance SLA driven power optimization is critical for TCO optimization and PUE efficiency. Need platform and solution co-innovation to support dynamic, flexible and workload aware optimization policies.
- Open and standard API able to reduce deployment cost in large scale cloud environment. Need collaboration to define common telemetries and control interface for OCP platform, e.g. via baseline OCP HW Mgmt. profile.
- Cloud developers and users need to understand and define their performance requirements for their cloud apps
- Get involved: https://www.opencompute.org/projects/hardware-management

лими

Open. Together.

Case Studies

Open. Together. OCP Global Summit | March 14–15, 2019

