
Connect. Collaborate. Accelerate.

SystemReady
LS updates

Jeffrey Booher-Kaeding
System Architecture Engineer, Arm

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

Arm SystemReady
• Review

⎻ SystemReady and SystemReady LS
⎻ LinuxBoot

• Standards for SystemReady LS
⎻ LBBR-V1 & LBBR-Vn

• SystemReady LS V0.9
⎻ Certification requirements and processes

• System Showcase
⎻ Showcase production systems
⎻ Showcase of proof of concepts (PoC) systems and resources

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

Arm SystemReady

• SystemReady is a foundational compliance certification
program that brings a level of consistency across broad range
of Arm devices, spanning Server, Infrastructure Edge and IoT
Edge sectors.

• Our vision is for software to work seamlessly across a vibrant,
diverse ecosystem of hardware

• Focusing on the common components of the software stack
– the OS, hypervisor, and middleware components

• Establishing a more uniform hardware system architecture
and consistency around key processes like boot, through our
standards-based approach

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

LS
"Just Works" for Linux OSes on Arm server
SoCs
• Program tailored to meet needs of many

hyperscalers
• Ensures standard firmware interfaces to

deploy and maintain
• Targets hyperscalers’ Linux environment

SR
"Just Works" on Arm server or
workstation SoCs
• Program tailored to meet needs of

Windows, VMware, Linux, and BSD
ecosystem

• Ensures standard firmware interfaces
to deploy and maintain

• Supports old OSes to run on new
hardware and vice versa

• Targets generic off-the-shelf OSes

SystemReady LS and SR OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.https://linuxboot.org/

LinuxBoot
What is LinuxBoot?
• Foundation for Arm SystemReady LS class of servers
• LinuxBoot is an alternative firmware stack (used by

hyperscale datacenters) that relies on the Linux kernel and
u-root as the Normal World firmware component.
• Re-uses existing Linux drivers code (without the need to

duplicate work by writing DXE/UEFI drivers)

OPEN SYSTEM
FIRMWARE

https://linuxboot.org/

Connect. Collaborate. Accelerate.

S t a n d a r d s f o r
S y s t e m R e a d y L S

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

• SBSA: Servers market segment
specific hardware requirements

• Mostly follows the Arm
architecture enhancements

• SBSA v7.0 (Jan 2021)

• BBR v2.0 (May 2022)
• SBBR, EBBR, LBBR Recipes

targeting different Oses

• Expands to include common
firmware interfaces, but
recognizes that different software
stacks will require different recipes

Server Hardware Supplement
(SBSA)

Hardware requirements
(BSA – Base System Architecture)

Firmware
(BBR – Base Boot Requirements)

• BSA v1.0b (May 2022) – generic
hardware target

• Documents a minimal set of CPU
and system architecture
necessary for an OS to boot and
run. Includes aspects such as
PCIe integration.

http://www.arm.com/systemready-certification-program

Arm SystemReady standards OPEN SYSTEM
FIRMWARE

http://www.arm.com/systemready-certification-program

Connect. Collaborate. Accelerate.

Standards for LS vs SR

UEFI (reduced)
+ ACPI + SMBIOSFirmware Spec

Platform Hardware 64bit Arm

Linux (for LBBR-v1) Generic, off-the-shelfOS/Hypervisor

OS Distro
(examples)

Hardware
Compliance Levels

BSA+SBSA
Levels 3 through 6

BSA+SBSA
Levels 3 through 6

BBR Recipe SBBRLBBR-v1
(LBBR-vn in devlopment)

Certification Arm SystemReady SR
+ System Certification List

Arm SystemReady LS
+ System Compatibility List

VMware ESXi, Windows
Client/Server, RHEL, SLES,
Ubuntu, CentOS, Fedora,
openSUSE, Debian, CBL-Mariner,
FreeBSD, NetBSD, OpenBSD, …

UEFI + ACPI + SMBIOS

64bit Arm

Linux distros (Ubuntu,
CentOS, Fedora, Debian,

openSUSE, etc…)

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

LBBR
• Define the “base boot requirements” for LinuxBoot based Arm servers,

enabling SystemReady LS
• LBBR requirements are covered in the BBR specification

⎻ BBR v1.0 (Oct 2020) had preliminary LBBR requirements
⎻ BBR v2.0 (May 2022) defines LBBR-v1 recipe requirements

• Defined in a phased approach
⎻ LBBR-v1: is a practical set of requirements that map to today’s Arm server

implementations

• Goal is to continue evolving the LBBR recipes in the future
⎻ Reduce the dependency on underlying UEFI FW implementations
⎻ Improve the standard FW interfaces published by Linuxboot to the final

Operating System.

9

https://developer.arm.com/documentation/den0044/latest

OPEN SYSTEM
FIRMWARE

https://developer.arm.com/documentation/den0044/latest

Connect. Collaborate. Accelerate.

Arm LBBR-v1
• Minimal UEFI FW (TianoCore or others)

implements the OS runtime interfaces
⎻ SMBIOS + ACPI (needed for server use-cases)
⎻ UEFI Runtime services (reduced requirements)

• These runtime interfaces are also used
internally by LinuxBoot itself

• LinuxBoot launches the final Linux OS using
kexec (limited to running Linux OSes only)

• The interfaces are preserved and used by the
final Linux OS

https://developer.arm.com/documentation/den0044/latest

OPEN SYSTEM
FIRMWARE

https://developer.arm.com/documentation/den0044/latest

Connect. Collaborate. Accelerate.

Arm LBBR-v1
• On Arm64, the only way to convey the ACPI table to Linux

kernel is using UEFI Configuration Table
⎻ https://www.kernel.org/doc/html/latest/arm64/arm-

acpi.html#booting-using-acpi-tables
⎻ UEFI System Table is required (to host the ACPI and SMBIOS

table pointers)
• This means the entire “runtime portion” of the UEFI

System Table is needed
• All UEFI Runtime Services pointers must be implemented

(cannot be NULL)
⎻ But can return UNSUPPORTED

• Boot Services pointers are not needed (not used by final
OS)

• Tables of UEFI requirements and expectations can be
found in BBR 2.0

11

https://developer.arm.com/documentation/den0044/latest

OPEN SYSTEM
FIRMWARE

https://www.kernel.org/doc/html/latest/arm64/arm-acpi.html
https://developer.arm.com/documentation/den0044/latest

Connect. Collaborate. Accelerate.

Future work: UEFI on top of
LinuxBoot

• Google leading ongoing work to implement UEFI ABI on top
of LinuxBoot.

• Relies on UefiPayloadPkg from EDK2
⎻ Fork: https://github.com/linuxboot/edk2/tree/uefipayload
⎻ Upstream:

https://github.com/tianocore/edk2/tree/master/UefiPayloadPkg
⎻ Approach: https://docs.google.com/document/d/11RRJSprAEp-

whQYagtO9VTospLTCG5gzSOPoUEWllJQ
⎻ Design details:

https://docs.google.com/document/d/1mU6ICHTh0ot8U45uuRENK
OGI8cVzizdyWHGYHpEguVg/

⎻ Join the discussions at OSFC slack server #efi-boot-support
channel

OPEN SYSTEM
FIRMWARE

https://github.com/tianocore/tianocore.github.io/wiki/UefiPayloadPkg
https://github.com/linuxboot/edk2/tree/uefipayload
https://github.com/tianocore/edk2/tree/master/UefiPayloadPkg
https://docs.google.com/document/d/11RRJSprAEp-whQYagtO9VTospLTCG5gzSOPoUEWllJQ
https://docs.google.com/document/d/1mU6ICHTh0ot8U45uuRENKOGI8cVzizdyWHGYHpEguVg/
https://join.slack.com/t/osfw/shared_invite/zt-j4oh2vxx-fjFX_J5NpYBelHgjHAjxFQ

Connect. Collaborate. Accelerate.

Future work: UEFI on top of
LinuxBoot
• This approach can be used in future LBBR-vn

⎻ Allows removal of “minimal UEFI FW” below LinuxBoot, and
replace with some other minimal platform FW (such as
CoreBoot)

⎻ Allows presenting more complete UEFI interfaces to the final
OS (including UEFI Boot Services), which enables booting non-
Linux OSes

⎻ Can potentially lead to merging the Arm SystemReady SR and
LS bands

• Currently UefiPayloadPkg not supported on AARCH64
⎻ Development work needed

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

LBBR Evolution Roadmap

14

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

SystemReady LS
V0.9
Certification requirements and processes

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

SystemReady Requirements Specif icat ion
(SRS) v1.3

New SystemReady LS requirements and version!

• SystemReady LS v0.9 requires the certified devices to be compliant to the
following specifications:
⎻ BSA v1.0b and Level 3-6 as defined in SBSA Supplement v7.0.
⎻ LBBR-v1 recipe in BBR v2.0.

• To certify a device for SystemReady LS v0.9, the following need to be
submitted:
⎻ Results from running the SystemReady SR ACS v1.0 UEFI SBSA tests on the device

with SBBR-compliant firmware

⎻ Results from running the SystemReady SR ACS v1.0 FirmwareTestSuite
(FWTS) and Linux SBSA tests on the same device with LBBRv1-
compliant firmware

⎻ Boot logs from two of the Linux distros are required. The recommended distros are
CentOS, Debian, Ubuntu, openSUSE and Fedora

https://developer.arm.com/documentation/den0109/latest

OPEN SYSTEM
FIRMWARE

https://developer.arm.com/documentation/den0109/latest

systemready-ls-template repo
New repo to with all details of how to Certify LS V0.9
⎻ Detailed README

• Step-by-step guide of collecting ACS-SR 1.0 logs
• Recommendations to avoid common issues when first working with

LinuxBoot & U-root
• Checklist of all results, logs, and what firmware they need to be

collected with.

⎻ Including folder structure to help keep track of results and logs
• ACS results folder both SBBR & LBBR firmware
• Linux OS logs, with link to download OS’es
• Document and firmware folder for notes.

⎻ Platform to open issues, and contiguously improve
documentation and processes.

https://gitlab.arm.com/systemready/systemready-LS-template

OPEN SYSTEM
FIRMWARE

https://gitlab.arm.com/systemready/systemready-LS-template

UEFI Interactive Shell v2.2
EDK II
UEFI v2.70
Mapping table

FS0: Alias(s):HD0b0b:;BLK1:
PcieRoot(0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/USB(0x1,0x0)/HD(1,

GPT,E6F853B2
-F9DD-4577-8646-BC516EA17AC3,0x800,0xFFFFF)
…
Press ESC in 5 seconds to skip startup.nsh or any other key to
continue.
Shell> FS0:
FS0:\> cd EFI\BOOT\bsa\sbsa
FS0:\EFI\BOOT\bsa\sbsa\> Sbsa.efi -skip 800 -f SbsaResults.log

SBSA Architecture Compliance Suite
…

Total Tests run = XX; Tests Passed = XX; Tests Failed = XX

*** SBSA tests complete. Reset the system. ***

Certifying For LS with ACS-SR

https://gitlab.arm.com/systemready/systemready-LS-template

SBSA tests under SBBR firmware

• Some of the SR ACS tests depend on
having the UEFI pre-boot environment,
which is not required to be present for
LBBR compliance.

• This limitation is addressed by using an
SBBR compliant firmware on the same
system under LS certification to run the
UEFI SBSA tests.

• After escaping the shell, running the SBSA
tests are simple

OPEN SYSTEM
FIRMWARE

https://gitlab.arm.com/systemready/systemready-LS-template

Certifying For LS with ACS-SR
2021/10/05 00:22:19 Welcome to u-root!

_ _ _ __ ___ ___ | |_
| | | |____| '__/ _ \ / _ \| __|
| |_| |____| | | (_) | (_) | |_
__,_| |_| ___/ ___/ __|

~/# mkdir mnt
~/# mount /dev/sda1 /mnt
~/# cd mnt/
~/mnt# kexec –d -i ramdisk-busybox.img -l Image -c "rootwait verbose
debug crashkernel=256M"
......
.................
2021/10/05 00:24:35 Kernel: /tmp/kexec-image660720805
2021/10/05 00:24:35 Initrd: /tmp/kexec-image806163904
2021/10/05 00:24:35 Command line: rootwait verbose debug
crashkernel=256M
~/mnt# kexec -e
[0.000000] Booting Linux on physical CPU 0x0000000000
…
Executing FWTS for SBBR
Running Linux BSA tests
…

https://gitlab.arm.com/systemready/systemready-LS-template

ACS Linux from LBBR firmware

• The FWTS and BSA tests of the ACS test
suite can utilize the LBBR firmware

• We can flash the system to LBBR firmware
to complete the test suites.

• Run a kexec into the acs image and it will
automatically run the remaining tests

• (FWTS tests for SBBR, but only test cases
related to LBBR are analyzed)

OPEN SYSTEM
FIRMWARE

https://gitlab.arm.com/systemready/systemready-LS-template

Connect. Collaborate. Accelerate.

System Showcase

Production and Proof of Concept systems

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

Ampere Mt. Jade: The First
SystemReady LS Platform!
• Arm SystemReady SR v2.0 certified And LS V0.9
• First Arm server as an OCP Accepted design in OpenCompute Project
• Firmware options both open-source (TianoCore EDK2, OpenBMC, LinuxBoot) and

commercial (AMI Aptio, AMI MegaRAC)
• TianoCore : https://github.com/AmpereComputing/edk2-

platforms/tree/ampere/Platform/Ampere/AmperePlatformPkg
• LinuxBoot : https://github.com/linuxboot/mainboards/

tree/master/ampere/jade
• Ampere EDK2 + LinuxBoot integration include a build option to replace the EDK2 BDS

phase with LinuxBoot & u-root UI. Ampere contributed LinuxBootBootManagerLib
common library that can be used by other Arm systems for seamless Linuxboot
transition.

OPEN SYSTEM
FIRMWARE

https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/join-arm-at-ocp-2021
https://github.com/AmpereComputing/edk2-platforms/tree/ampere/Platform/Ampere/AmperePlatformPkg
https://github.com/linuxboot/mainboards/tree/master/ampere/jade
https://github.com/AmpereComputing/edk2-platforms/tree/ampere/Platform/Ampere/LinuxBootPkg
https://github.com/tianocore/edk2/tree/master/ArmPkg/Library/LinuxBootBootManagerLib

Ampere Mt. Jade Seamless Boot into U-root
Truncated boot log, Seamless into u-root, manual into final OS

…
DRAM: 512GB DDR4 3200 SYMBOL ECC
Booting Linux on physical CPU 0x0000120000 [0x413fd0c1]
Linux version 5.7.0+ (jeffdev@JeffDev) (gcc version 8.3.0
(Debian 8.3.0-6), GNU ld (GNU Binutils for Debian) 2.31.1)
#1 SMP Tue Mar 1 13:16:38 CST 2022
efi: EFI v2.70 by EDK II
efi: ACPI 2.0=0x403fffa20018 SMBIOS 3.0=0x403fff700000
MEMATTR=0x403ffffef018 MEMRESERVE=0x403ffffec018
ACPI: Early table checksum verification disabled
ACPI: RSDP 0x0000403FFFA20018 000024 (v02 Ampere)
ACPI: XSDT 0x0000403FFFA2FE98 0000B4 (v01 Ampere Altra
00000002 AMP. 01000013)
…
mp: Bringing up secondary CPUs ...
Detected PIPT I-cache on CPU1
GICv3: CPU1: found redistributor 120100 region
0:0x00001001005e0000
GICv3: CPU1: using allocated LPI pending table
@0x0000403ffec50000
CPU1: Booted secondary processor 0x0000120100 [0x413fd0c1]
...
smp: Brought up 1 node, 160 CPUs
SMP: Total of 160 processors activated.
CPU features: detected: 32-bit EL0 Support
CPU features: detected: Data cache clean to the PoU not
required for I/D coherence
CPU features: detected: CRC32 instructions
CPU: All CPU(s) started at EL2
devtmpfs: initialized
…
thermal_sys: Registered thermal governor 'step_wise'
SMBIOS 3.3.0 present.
DMI: WIWYNN Mt.Jade Server System/Mt.Jade Motherboard, BIOS
TianoCore 1.07.100 (SYS: 2.05.20211208) 02/02/2022
Run /init as init process
1970/01/01 00:00:09 Welcome to u-root!

_
_ _ _ __ ___ ___ | |_
| | | |____| '__/ _ \ / _ \| __|
| |_| |____| | | (_) | (_) | |_
__,_| |_| ___/ ___/ __|

cgroup: Unknown subsys name 'perf_event'
init: 1970/01/01 00:00:09 Deprecation warning: use
UROOT_NOHWRNG=1 on kernel cmdline instead of
uroot.nohwrng
init: 1970/01/01 00:00:09 no modules found matching
'/lib/modules/*.ko'
~/# mkdir mnt
~/# mount /dev/nvme0n1p2 mnt
~/# cd mnt/boot/
~/mnt/boot# kexec -i initrd.img-5.10.0-12-arm64 -l
vmlinuz-5.10.0-12-arm64 -c

"ro root=/dev/nvme0n1p2
earlycon=pl011,0x100002600000"
~/mnt/boot# kexec –e
[0.000000] Booting Linux on physical CPU
0x0000120000 [0x413fd0c1]
[0.000000] Linux version 5.10.0-12-arm64
(debian-kernel@lists.debian.org) (gcc-10 (Debian
10.2.1-6) 10.2.1 20210110, GNU ld (GNU Binutils for
Debian) 2.35.2) #1 SMP Debian 5.10.103-1 (2022-03-
07)
[0.000000] earlycon: pl11 at MMIO
0x0000100002600000 (options '')
[0.000000] printk: bootconsole [pl11] enabled
[0.000000] efi: EFI v2.70 by EDK II
[0.000000] efi: ACPI 2.0=0x403fffa20018 SMBIOS
3.0=0x403fff700000 MEMATTR=0x403ffffef018
MEMRESERVE=0x403ffffec018

…
[0.360492] smp: Bringing up secondary CPUs ...
[0.365441] Detected PIPT I-cache on CPU1
[0.365461] GICv3: CPU1: found redistributor
120100 region 0:0x00001001005e0000
[0.365470] GICv3: CPU1: using reserved LPI
pending table @0x0000403ffec50000
[0.365555] arch_timer: Enabling local workaround
for ARM erratum 1418040
[0.365566] CPU1: Booted secondary processor
0x0000120100 [0x413fd0c1]
…
condary processor 0x0100070100 [0x413fd0c1]
[0.488533] smp: Brought up 2 nodes, 160 CPUs
[5.725905] SMP: Total of 160 processors
activated.
…
Begin: Loading essential drivers ... done.
Begin: Running /scripts/init-premount ... done.
Begin: Mounting root file system ... Begin: Running
/scripts/local-top ... done.
Begin: Running /scripts/local-premount ... done.
Begin: Will now check root file system ... fsck from
util-linux 2.36.1
…
/dev/nvme0n1p2: 0c, idProduct=1000, bcdDevice=11.00
5456 files, 4273859/234041856 blocks
done.
…

Debian GNU/Linux 11 demo-111 ttyAMA0

demo-111 login:

OPEN SYSTEM
FIRMWARE

OS logs
(Truncated for space)

000:00:00.0 Host bridge: Ampere Computing, LLC Altra PCI Express Root Complex A

0000:00:01.0 PCI bridge: Ampere Computing, LLC Altra PCI Express Root Port a0 (rev 04) (prog-if 00 [Normal decode])

0000:01:00.0 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]

OPEN SYSTEM
FIRMWARE

• dmidecode
dmidecode 3.3
Getting SMBIOS data from sysfs.
SMBIOS 3.3.0 present.
Table at 0x403FFF6F0000.

Handle 0x0000, DMI type 3, 22 bytes
Chassis Information

Manufacturer: WIWYNN
Type: Rack Mount Chassis
Lock: Not Present
Version: XXX.XXXXX.XXXX
Serial Number: XXXXXXXXXXXX
Asset Tag: Asset Tag Not Set
Boot-up State: Unknown
Power Supply State: Safe
Thermal State: Safe
Security Status: None
OEM Information: 0x00000000
Height: 2 U
Number Of Power Cords: 2
Contained Elements: 0
SKU Number:

FEDCBA9876543211FEDCBA9876543211

…

• lscpu
Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 160
On-line CPU(s) list: 0-159
Thread(s) per core: 1
Core(s) per socket: 80
Socket(s): 2
NUMA node(s): 2
Vendor ID: ARM
Model: 1
Model name: Neoverse-N1
Stepping: r3p1
Frequency boost: disabled
CPU max MHz: 3000.0000
CPU min MHz: 1000.0000
BogoMIPS: 50.00
L1d cache: 10 MiB
L1i cache: 10 MiB
L2 cache: 160 MiB
NUMA node0 CPU(s): 0-79
NUMA node1 CPU(s): 80-159
…

• lspci

Connect. Collaborate. Accelerate.

Arm LinuxBoot PoC repo

https://gitlab.arm.com/systemready/linuxboot-resources

OPEN SYSTEM
FIRMWARE

• Arm Gitlab repo with arm several proof of concepts systems
• Several PoC’s in development

• sbsa-ref QEMU
• Virtual platform supporting SBSA Specs

• Guide for building firmware for LinuxBoot and booting OS.
• target of future upstreaming

• RaspberryPi

• Easily accessible, real hardware
• Guide for building firmware for LinuxBoot and booting OS.

• Arm Neoverse FVP
• complete simulation of an Arm system, including processor, memory and

peripherals

• Guide for setting up FVP, building firmware image and booting OS.

• Will be updated as LBBR and SystemReady progresses

https://gitlab.arm.com/systemready/linuxboot-resources

Connect. Collaborate. Accelerate.

sbsa-ref QEMU
• Virtual platform for Armv8-A, with support for Arm SBSA specifications

⎻ Available as “sbsa-ref” machine
⎻ Supports SBSA HW such as GICv3, generic timer, watchdog, etc..
⎻ Choice as an environment for developing firmware and testing operating systems and compliance testing

• Linaro working on completing SBSA and SBBR support Upstream and testing compliance with the ACS test
suite
⎻ https://github.com/tianocore/edk2-platforms/tree/master/Platform/Qemu/SbsaQemu

• Fujitsu presentation on LinuxBoot running on top of UEFI in QEMU
⎻ https://sysadmin.miniconf.org/2021/lca2021-Naohiro_Tamra-LinuxBoot_AArch64.pdf

• Building EDK2 with extended firmware volume, Build image with kernel & initramfs, Use UTK to replace UEFI shell with this
Linux Image

• Arm presentation on LinuxBoot running on top of UEFI in QEMU
⎻ https://talks.osfc.io/media/osfc2021/submissions/NVDFNC/resources/LBBR_OSFC_2021_Bg6kGLT.pdf

• Building Linux boot into an edk2 image, work on removing DXEs

OPEN SYSTEM
FIRMWARE

https://github.com/tianocore/edk2-platforms/tree/master/Platform/Qemu/SbsaQemu
https://sysadmin.miniconf.org/2021/lca2021-Naohiro_Tamra-LinuxBoot_AArch64.pdf
https://talks.osfc.io/media/osfc2021/submissions/NVDFNC/resources/LBBR_OSFC_2021_Bg6kGLT.pdf

Enter u-root & first stage
kernel, greeted with a
command line

Setting up & kexec, this
process can be automated via
u-root’s SystemBoot and Uinit
script

Booting into
ACS and
running tests

Booting Kernel + BusyBox, and
running Arm SystemReady ACS
(Architectural Compliance test Suite)

PoC demo: sbsa-ref QEMU & ACS image OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

LinuxBoot + Arm: Raspberry Pi 4
Model B
• Arm SystemReady ES and IR certified

• Fully open-source firmware community project

• TianoCore: https://github.com/tianocore/edk2-
platforms/tree/master/Platform/RaspberryPi

• Discord community: https://discord.gg/VfYbkfp

• Arm working on LinuxBoot support PoC. Not a target of SystemReady LS certification.
⎻ IoT/Embedded market is targeted by SystemReady ES and IR
⎻ RPi4 HW popularity and availability (And open-source community FW) makes it attractive for PoC
⎻ Repo containing PoC code: https://gitlab.arm.com/systemready/linuxboot-resources/-

/tree/master/RPi4

OPEN SYSTEM
FIRMWARE

https://github.com/tianocore/edk2-platforms/tree/master/Platform/RaspberryPi
https://discord.gg/VfYbkfp
https://gitlab.arm.com/systemready/linuxboot-resources/-/tree/master/RPi4

Connect. Collaborate. Accelerate.

Setup and execute kexec.
(can automated with systemboot or Uinit)

PoC demo: RPi4 & Fedora 34
Boot Fedora 34, with ACPI

OPEN SYSTEM
FIRMWARE

Connect. Collaborate. Accelerate.

Future work: PoCs

• Seamless LinuxBoot transitions
⎻ LinuxBootBootManagerLib integration into Arm PoCs &

Integration of U-root SytemBoot bootloaders (represented to the
right)

• Firmware size Reduction
⎻ Removal of DXEs that are no longer needed
⎻ Reduction of Kernel & initramfs size

• Upstream
⎻ Contribute refence code and platforms to EDK2
⎻ Update LinuxBoot Resources Repo as work progresses

• Investigate LBBR-Vn features
⎻ Payload Package?
⎻ Alterative hardware initialization firmware?

OPEN SYSTEM
FIRMWARE

https://github.com/tianocore/edk2/tree/master/ArmPkg/Library/LinuxBootBootManagerLib
https://gitlab.arm.com/systemready/linuxboot-resources

Recap
Review
⎻ SystemReady and SystemReady LS
⎻ LinuxBoot

Standards for SystemReady LS
⎻ LBBR-V1 & LBBR-Vn

SystemReady LS V0.9
⎻ Certification requirements and processes

System Showcase
⎻ Showcase production systems
⎻ Showcase of proof of concepts (PoC) systems and resources

OPEN SYSTEM
FIRMWARE

Arm SystemReady and LinuxBoot resources:

• SystemReady Certification Program Website

https://www.arm.com/systemready-certification-program

• Arm LinuxBoot PoCs, Code changes, video demos

https://gitlab.arm.com/systemready/linuxboot-resources

• SystemReady-LS-template Repo for SystemReady certation procedure and guidance

https://gitlab.arm.com/systemready/systemready-LS-template

• Contact systemready@arm.com

• Speaker Jeff.Booher-Kaeding@arm.com

Reach out, get involved! OPEN SYSTEM
FIRMWARE

https://www.arm.com/systemready-certification-program
https://gitlab.arm.com/systemready/linuxboot-resources
https://gitlab.arm.com/systemready/systemready-LS-template
mailto:systemready@arm.com
mailto:Jeff.Booher-Kaeding@arm.com

