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Arm SystemReady

• SystemReady is a foundational compliance certification 
program that brings a level of consistency across broad range 
of Arm devices, spanning Server, Infrastructure Edge and IoT 
Edge sectors.

• Our vision is for software to work seamlessly across a vibrant, 
diverse ecosystem of hardware

• Focusing on the common components of the software stack 
– the OS, hypervisor, and middleware components

• Establishing a more uniform hardware system architecture 
and consistency around key processes like boot, through our 
standards-based approach
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LS
"Just Works" for Linux OSes on Arm server 
SoCs
• Program tailored to meet needs of many 

hyperscalers
• Ensures standard firmware interfaces to 

deploy and maintain
• Targets hyperscalers’ Linux environment

SR
"Just Works" on Arm server or 
workstation SoCs
• Program tailored to meet needs of 

Windows, VMware, Linux, and BSD 
ecosystem

• Ensures standard firmware interfaces 
to deploy and maintain

• Supports old OSes to run on new 
hardware and vice versa

• Targets generic off-the-shelf OSes

SystemReady LS and SR OPEN SYSTEM 
FIRMWARE
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LinuxBoot
What is LinuxBoot?
• Foundation for Arm SystemReady LS class of servers
• LinuxBoot is an alternative firmware stack (used by 

hyperscale datacenters) that relies on the Linux kernel and 
u-root as the Normal World firmware component. 
• Re-uses existing Linux drivers code (without the need to 

duplicate work by writing DXE/UEFI drivers)
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• SBSA: Servers market segment 
specific hardware requirements

• Mostly follows the Arm 
architecture enhancements

• SBSA v7.0 (Jan 2021)

• BBR v2.0 (May 2022)
• SBBR, EBBR, LBBR Recipes 

targeting different Oses

• Expands to include common 
firmware interfaces, but 
recognizes that different software 
stacks will require different recipes

Server Hardware Supplement 
(SBSA)

Hardware requirements 
(BSA – Base System Architecture)

Firmware 
(BBR – Base Boot Requirements)

• BSA v1.0b (May 2022) – generic 
hardware target

• Documents a minimal set of CPU 
and system architecture 
necessary for an OS to boot and 
run. Includes aspects such as 
PCIe integration.

http://www.arm.com/systemready-certification-program

Arm SystemReady standards OPEN SYSTEM 
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Standards for LS vs SR

UEFI (reduced)
+ ACPI + SMBIOSFirmware Spec

Platform Hardware 64bit Arm

Linux (for LBBR-v1) Generic, off-the-shelfOS/Hypervisor

OS Distro
(examples)

Hardware 
Compliance Levels

BSA+SBSA
Levels 3 through 6

BSA+SBSA
Levels 3 through 6

BBR Recipe SBBRLBBR-v1 
(LBBR-vn in devlopment)

Certification Arm SystemReady SR
+ System Certification List

Arm SystemReady LS
+ System Compatibility List

VMware ESXi, Windows 
Client/Server, RHEL, SLES, 
Ubuntu, CentOS, Fedora, 
openSUSE, Debian, CBL-Mariner, 
FreeBSD, NetBSD, OpenBSD, …

UEFI + ACPI + SMBIOS

64bit Arm

Linux distros (Ubuntu, 
CentOS, Fedora, Debian, 

openSUSE, etc…)
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LBBR
• Define the “base boot requirements” for LinuxBoot based Arm servers, 

enabling SystemReady LS
• LBBR requirements are covered in the BBR specification

⎻ BBR v1.0 (Oct 2020) had preliminary LBBR requirements
⎻ BBR v2.0 (May 2022) defines LBBR-v1 recipe requirements

• Defined in a phased approach
⎻ LBBR-v1: is a practical set of requirements that map to today’s Arm server 

implementations

• Goal is to continue evolving the LBBR recipes in the future
⎻ Reduce the dependency on underlying UEFI FW implementations
⎻ Improve the standard FW interfaces published by Linuxboot to the final 

Operating System.

9

https://developer.arm.com/documentation/den0044/latest
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Arm LBBR-v1
• Minimal UEFI FW (TianoCore or others) 

implements the OS runtime interfaces
⎻ SMBIOS + ACPI (needed for server use-cases)
⎻ UEFI Runtime services (reduced requirements)

• These runtime interfaces are also used 
internally by LinuxBoot itself

• LinuxBoot launches the final Linux OS using 
kexec (limited to running Linux OSes only)

• The interfaces are preserved and used by the 
final Linux OS

https://developer.arm.com/documentation/den0044/latest
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Arm LBBR-v1
• On Arm64, the only way to convey the ACPI table to Linux 

kernel is using UEFI Configuration Table
⎻ https://www.kernel.org/doc/html/latest/arm64/arm-

acpi.html#booting-using-acpi-tables
⎻ UEFI System Table is required (to host the ACPI and SMBIOS 

table pointers)
• This means the entire “runtime portion” of the UEFI 

System Table is needed
• All UEFI Runtime Services pointers must be implemented 

(cannot be NULL)
⎻ But can return UNSUPPORTED

• Boot Services pointers are not needed (not used by final 
OS)

• Tables of UEFI requirements and expectations can be 
found in BBR 2.0

11

https://developer.arm.com/documentation/den0044/latest
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Future work: UEFI on top of 
LinuxBoot

• Google leading ongoing work to implement UEFI ABI on top 
of LinuxBoot. 

• Relies on UefiPayloadPkg from EDK2
⎻ Fork: https://github.com/linuxboot/edk2/tree/uefipayload
⎻ Upstream: 

https://github.com/tianocore/edk2/tree/master/UefiPayloadPkg
⎻ Approach: https://docs.google.com/document/d/11RRJSprAEp-

whQYagtO9VTospLTCG5gzSOPoUEWllJQ
⎻ Design details: 

https://docs.google.com/document/d/1mU6ICHTh0ot8U45uuRENK
OGI8cVzizdyWHGYHpEguVg/

⎻ Join the discussions at OSFC slack server #efi-boot-support 
channel

OPEN SYSTEM 
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https://github.com/tianocore/tianocore.github.io/wiki/UefiPayloadPkg
https://github.com/linuxboot/edk2/tree/uefipayload
https://github.com/tianocore/edk2/tree/master/UefiPayloadPkg
https://docs.google.com/document/d/11RRJSprAEp-whQYagtO9VTospLTCG5gzSOPoUEWllJQ
https://docs.google.com/document/d/1mU6ICHTh0ot8U45uuRENKOGI8cVzizdyWHGYHpEguVg/
https://join.slack.com/t/osfw/shared_invite/zt-j4oh2vxx-fjFX_J5NpYBelHgjHAjxFQ
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Future work: UEFI on top of 
LinuxBoot
• This approach can be used in future LBBR-vn

⎻ Allows removal of “minimal UEFI FW” below LinuxBoot, and 
replace with some other minimal platform FW (such as 
CoreBoot)

⎻ Allows presenting more complete UEFI interfaces to the final 
OS (including UEFI Boot Services), which enables booting non-
Linux OSes

⎻ Can potentially lead to merging the Arm SystemReady SR and 
LS bands

• Currently UefiPayloadPkg not supported on AARCH64
⎻ Development work needed

OPEN SYSTEM 
FIRMWARE
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LBBR Evolution Roadmap

14

OPEN SYSTEM 
FIRMWARE



Connect. Collaborate. Accelerate.

SystemReady LS 
V0.9
Certification requirements and processes
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SystemReady Requirements Specif icat ion 
(SRS) v1.3

New SystemReady LS requirements and version! 

• SystemReady LS v0.9 requires the certified devices to be compliant to the 
following specifications:
⎻ BSA v1.0b and Level 3-6 as defined in SBSA Supplement v7.0.
⎻ LBBR-v1 recipe in BBR v2.0.

• To certify a device for SystemReady LS v0.9, the following need to be 
submitted:
⎻ Results from running the SystemReady SR ACS v1.0 UEFI SBSA tests on the device 

with SBBR-compliant firmware

⎻ Results from running the SystemReady SR ACS v1.0 FirmwareTestSuite
(FWTS) and Linux SBSA tests on the same device with LBBRv1-
compliant firmware

⎻ Boot logs from two of the Linux distros are required. The recommended distros are 
CentOS, Debian, Ubuntu, openSUSE and Fedora

https://developer.arm.com/documentation/den0109/latest

OPEN SYSTEM 
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systemready-ls-template repo
New repo to with all details of how to Certify LS V0.9
⎻ Detailed README

• Step-by-step guide of collecting ACS-SR 1.0 logs 
• Recommendations to avoid common issues when first working with 

LinuxBoot & U-root
• Checklist of all results, logs, and what firmware they need to be 

collected with.

⎻ Including folder structure to help keep track of results and logs
• ACS results folder both SBBR & LBBR firmware
• Linux OS logs, with link to download OS’es
• Document and firmware folder for notes.

⎻ Platform to open issues, and contiguously improve 
documentation and processes.

https://gitlab.arm.com/systemready/systemready-LS-template

OPEN SYSTEM 
FIRMWARE

https://gitlab.arm.com/systemready/systemready-LS-template


UEFI Interactive Shell v2.2
EDK II
UEFI v2.70
Mapping table

FS0: Alias(s):HD0b0b:;BLK1:
PcieRoot(0x0)/Pci(0x0,0x0)/Pci(0x0,0x0)/USB(0x1,0x0)/HD(1,

GPT,E6F853B2
-F9DD-4577-8646-BC516EA17AC3,0x800,0xFFFFF)
…
Press ESC in 5 seconds to skip startup.nsh or any other key to 
continue.
Shell> FS0:
FS0:\> cd EFI\BOOT\bsa\sbsa
FS0:\EFI\BOOT\bsa\sbsa\> Sbsa.efi -skip 800 -f SbsaResults.log

SBSA Architecture Compliance Suite
…

-------------------------------------------------------
Total Tests run =  XX; Tests Passed = XX; Tests Failed = XX
---------------------------------------------------------

*** SBSA tests complete. Reset the system. ***

Certifying For LS with ACS-SR

https://gitlab.arm.com/systemready/systemready-LS-template

SBSA tests under SBBR firmware

• Some of the SR ACS tests depend on 
having the UEFI pre-boot environment, 
which is not required to be present for 
LBBR compliance.

• This limitation is addressed by using an 
SBBR compliant firmware on the same 
system under LS certification to run the 
UEFI SBSA tests.

• After escaping the shell, running the SBSA 
tests are simple

OPEN SYSTEM 
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Certifying For LS with ACS-SR
2021/10/05 00:22:19 Welcome to u-root!

_   _      _ __ ___   ___ | |_
| | | |____| '__/ _ \ / _ \| __|
| |_| |____| | | (_) | (_) | |_
\__,_|    |_|  \___/ \___/ \__|

~/# mkdir mnt
~/# mount /dev/sda1 /mnt
~/# cd mnt/
~/mnt# kexec –d -i ramdisk-busybox.img -l Image -c "rootwait verbose 
debug crashkernel=256M"
......
.................
2021/10/05 00:24:35 Kernel: /tmp/kexec-image660720805
2021/10/05 00:24:35 Initrd: /tmp/kexec-image806163904
2021/10/05 00:24:35 Command line: rootwait verbose debug 
crashkernel=256M
~/mnt# kexec -e
[ 0.000000] Booting Linux on physical CPU 0x0000000000
…
Executing FWTS for SBBR
Running Linux BSA tests
…

https://gitlab.arm.com/systemready/systemready-LS-template

ACS Linux from LBBR firmware

• The FWTS and BSA tests of the ACS test 
suite can utilize the LBBR firmware

• We can flash the system to LBBR firmware 
to complete the test suites.

• Run a kexec into the acs image and it will 
automatically run the remaining tests

• (FWTS tests for SBBR, but only test cases 
related to LBBR are analyzed) 

OPEN SYSTEM 
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System Showcase

Production and Proof of Concept systems
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Ampere Mt. Jade: The First 
SystemReady LS Platform!
• Arm SystemReady SR v2.0 certified And LS V0.9
• First Arm server as an OCP Accepted design in OpenCompute Project
• Firmware options both open-source (TianoCore EDK2, OpenBMC, LinuxBoot) and 

commercial (AMI Aptio, AMI MegaRAC)
• TianoCore : https://github.com/AmpereComputing/edk2-

platforms/tree/ampere/Platform/Ampere/AmperePlatformPkg
• LinuxBoot : https://github.com/linuxboot/mainboards/

tree/master/ampere/jade
• Ampere EDK2 + LinuxBoot integration include a build option to replace the EDK2 BDS 

phase with LinuxBoot & u-root UI. Ampere contributed LinuxBootBootManagerLib
common library that can be used by other Arm systems for seamless Linuxboot
transition. 

OPEN SYSTEM 
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https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/join-arm-at-ocp-2021
https://github.com/AmpereComputing/edk2-platforms/tree/ampere/Platform/Ampere/AmperePlatformPkg
https://github.com/linuxboot/mainboards/tree/master/ampere/jade
https://github.com/AmpereComputing/edk2-platforms/tree/ampere/Platform/Ampere/LinuxBootPkg
https://github.com/tianocore/edk2/tree/master/ArmPkg/Library/LinuxBootBootManagerLib


Ampere Mt. Jade Seamless Boot into U-root
Truncated boot log, Seamless into u-root, manual into final OS

…
DRAM: 512GB DDR4 3200 SYMBOL ECC
Booting Linux on physical CPU 0x0000120000 [0x413fd0c1]
Linux version 5.7.0+ (jeffdev@JeffDev) (gcc version 8.3.0 
(Debian 8.3.0-6), GNU ld (GNU Binutils for Debian) 2.31.1) 
#1 SMP Tue Mar 1 13:16:38 CST 2022
efi: EFI v2.70 by EDK II
efi:  ACPI 2.0=0x403fffa20018  SMBIOS 3.0=0x403fff700000  
MEMATTR=0x403ffffef018  MEMRESERVE=0x403ffffec018 
ACPI: Early table checksum verification disabled
ACPI: RSDP 0x0000403FFFA20018 000024 (v02 Ampere)
ACPI: XSDT 0x0000403FFFA2FE98 0000B4 (v01 Ampere Altra
00000002 AMP. 01000013)
…
mp: Bringing up secondary CPUs ...
Detected PIPT I-cache on CPU1
GICv3: CPU1: found redistributor 120100 region 
0:0x00001001005e0000
GICv3: CPU1: using allocated LPI pending table 
@0x0000403ffec50000
CPU1: Booted secondary processor 0x0000120100 [0x413fd0c1]
...
smp: Brought up 1 node, 160 CPUs
SMP: Total of 160 processors activated.
CPU features: detected: 32-bit EL0 Support
CPU features: detected: Data cache clean to the PoU not 
required for I/D coherence
CPU features: detected: CRC32 instructions
CPU: All CPU(s) started at EL2
devtmpfs: initialized
…
thermal_sys: Registered thermal governor 'step_wise'
SMBIOS 3.3.0 present.
DMI: WIWYNN Mt.Jade Server System/Mt.Jade Motherboard, BIOS 
TianoCore 1.07.100 (SYS: 2.05.20211208) 02/02/2022
Run /init as init process
1970/01/01 00:00:09 Welcome to u-root!

_
_   _      _ __ ___   ___ | |_
| | | |____| '__/ _ \ / _ \| __|
| |_| |____| | | (_) | (_) | |_
\__,_|    |_|  \___/ \___/ \__|

cgroup: Unknown subsys name 'perf_event'
init: 1970/01/01 00:00:09 Deprecation warning: use 
UROOT_NOHWRNG=1 on kernel cmdline instead of 
uroot.nohwrng
init: 1970/01/01 00:00:09 no modules found matching 
'/lib/modules/*.ko'
~/# mkdir mnt
~/# mount /dev/nvme0n1p2 mnt
~/# cd mnt/boot/
~/mnt/boot# kexec -i initrd.img-5.10.0-12-arm64 -l 
vmlinuz-5.10.0-12-arm64 -c 

"ro root=/dev/nvme0n1p2 
earlycon=pl011,0x100002600000"
~/mnt/boot# kexec –e
[    0.000000] Booting Linux on physical CPU 
0x0000120000 [0x413fd0c1]
[    0.000000] Linux version 5.10.0-12-arm64 
(debian-kernel@lists.debian.org) (gcc-10 (Debian 
10.2.1-6) 10.2.1 20210110, GNU ld (GNU Binutils for 
Debian) 2.35.2) #1 SMP Debian 5.10.103-1 (2022-03-
07)
[    0.000000] earlycon: pl11 at MMIO 
0x0000100002600000 (options '')
[    0.000000] printk: bootconsole [pl11] enabled
[    0.000000] efi: EFI v2.70 by EDK II
[    0.000000] efi: ACPI 2.0=0x403fffa20018 SMBIOS 
3.0=0x403fff700000 MEMATTR=0x403ffffef018 
MEMRESERVE=0x403ffffec018

…
[    0.360492] smp: Bringing up secondary CPUs ...
[    0.365441] Detected PIPT I-cache on CPU1
[    0.365461] GICv3: CPU1: found redistributor 
120100 region 0:0x00001001005e0000
[    0.365470] GICv3: CPU1: using reserved LPI 
pending table @0x0000403ffec50000
[    0.365555] arch_timer: Enabling local workaround 
for ARM erratum 1418040
[    0.365566] CPU1: Booted secondary processor 
0x0000120100 [0x413fd0c1]
…
condary processor 0x0100070100 [0x413fd0c1]
[    0.488533] smp: Brought up 2 nodes, 160 CPUs
[    5.725905] SMP: Total of 160 processors 
activated.
… 
Begin: Loading essential drivers ... done.
Begin: Running /scripts/init-premount ... done.
Begin: Mounting root file system ... Begin: Running 
/scripts/local-top ... done.
Begin: Running /scripts/local-premount ... done.
Begin: Will now check root file system ... fsck from 
util-linux 2.36.1
…
/dev/nvme0n1p2: 0c, idProduct=1000, bcdDevice=11.00
5456 files, 4273859/234041856 blocks
done.
…

Debian GNU/Linux 11 demo-111 ttyAMA0

demo-111 login: 
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OS logs
(Truncated for space)

000:00:00.0 Host bridge: Ampere Computing, LLC Altra PCI Express Root Complex A

0000:00:01.0 PCI bridge: Ampere Computing, LLC Altra PCI Express Root Port a0 (rev 04) (prog-if 00 [Normal decode])

0000:01:00.0 Ethernet controller: Mellanox Technologies MT27800 Family [ConnectX-5]

OPEN SYSTEM 
FIRMWARE

• dmidecode
# dmidecode 3.3
Getting SMBIOS data from sysfs.
SMBIOS 3.3.0 present.
Table at 0x403FFF6F0000.

Handle 0x0000, DMI type 3, 22 bytes
Chassis Information

Manufacturer: WIWYNN
Type: Rack Mount Chassis
Lock: Not Present
Version: XXX.XXXXX.XXXX
Serial Number: XXXXXXXXXXXX
Asset Tag: Asset Tag Not Set  
Boot-up State: Unknown
Power Supply State: Safe
Thermal State: Safe
Security Status: None
OEM Information: 0x00000000
Height: 2 U
Number Of Power Cords: 2
Contained Elements: 0
SKU Number: 

FEDCBA9876543211FEDCBA9876543211

…

• lscpu
Architecture:                    aarch64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
CPU(s):                          160
On-line CPU(s) list:             0-159
Thread(s) per core:              1
Core(s) per socket:              80
Socket(s):                       2
NUMA node(s):                    2
Vendor ID:                       ARM
Model:                           1
Model name:                      Neoverse-N1
Stepping:                        r3p1
Frequency boost:                 disabled
CPU max MHz:                     3000.0000
CPU min MHz:                     1000.0000
BogoMIPS:                        50.00
L1d cache:                       10 MiB
L1i cache:                       10 MiB
L2 cache:                        160 MiB
NUMA node0 CPU(s):               0-79
NUMA node1 CPU(s):               80-159
…

• lspci
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Arm LinuxBoot PoC repo

https://gitlab.arm.com/systemready/linuxboot-resources

OPEN SYSTEM 
FIRMWARE

• Arm Gitlab repo with arm several proof of concepts systems
• Several PoC’s in development

• sbsa-ref QEMU 
• Virtual platform supporting SBSA Specs

• Guide for building firmware for LinuxBoot and booting OS.
• target of future upstreaming

• RaspberryPi

• Easily accessible, real hardware
• Guide for building firmware for LinuxBoot and booting OS.

• Arm Neoverse FVP
• complete simulation of an Arm system, including processor, memory and 

peripherals

• Guide for setting up FVP, building firmware image and booting OS.

• Will be updated as LBBR and SystemReady progresses

https://gitlab.arm.com/systemready/linuxboot-resources
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sbsa-ref QEMU
• Virtual platform for Armv8-A, with support for Arm SBSA specifications

⎻ Available as “sbsa-ref” machine
⎻ Supports SBSA HW such as GICv3, generic timer, watchdog, etc..
⎻ Choice as an environment for developing firmware and testing operating systems and compliance testing

• Linaro working on completing SBSA and SBBR support Upstream and testing compliance with the ACS test 
suite
⎻ https://github.com/tianocore/edk2-platforms/tree/master/Platform/Qemu/SbsaQemu

• Fujitsu presentation on LinuxBoot running on top of UEFI in QEMU
⎻ https://sysadmin.miniconf.org/2021/lca2021-Naohiro_Tamra-LinuxBoot_AArch64.pdf

• Building EDK2 with extended firmware volume, Build image with kernel & initramfs, Use UTK to replace UEFI shell with this 
Linux Image

• Arm presentation on LinuxBoot running on top of UEFI in QEMU
⎻ https://talks.osfc.io/media/osfc2021/submissions/NVDFNC/resources/LBBR_OSFC_2021_Bg6kGLT.pdf

• Building Linux boot into an edk2 image, work on removing DXEs

OPEN SYSTEM 
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https://github.com/tianocore/edk2-platforms/tree/master/Platform/Qemu/SbsaQemu
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Enter u-root & first stage 
kernel, greeted with a 
command line

Setting up & kexec, this 
process can be automated via 
u-root’s SystemBoot and Uinit
script

Booting into 
ACS and 
running tests

Booting Kernel + BusyBox, and 
running Arm SystemReady ACS 
(Architectural Compliance test Suite)

PoC demo: sbsa-ref QEMU & ACS image OPEN SYSTEM 
FIRMWARE
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LinuxBoot + Arm: Raspberry Pi 4 
Model B
• Arm SystemReady ES and IR certified

• Fully open-source firmware community project

• TianoCore: https://github.com/tianocore/edk2-
platforms/tree/master/Platform/RaspberryPi

• Discord community: https://discord.gg/VfYbkfp

• Arm working on LinuxBoot support PoC. Not a target of SystemReady LS certification.
⎻ IoT/Embedded market is targeted by SystemReady ES and IR
⎻ RPi4 HW popularity and availability (And open-source community FW) makes it attractive for PoC
⎻ Repo containing PoC code: https://gitlab.arm.com/systemready/linuxboot-resources/-

/tree/master/RPi4

OPEN SYSTEM 
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Setup and execute kexec. 
(can automated with systemboot or Uinit)

PoC demo: RPi4 & Fedora 34
Boot Fedora 34, with ACPI

OPEN SYSTEM 
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Future work: PoCs

• Seamless LinuxBoot transitions
⎻ LinuxBootBootManagerLib integration into Arm PoCs & 

Integration of U-root SytemBoot bootloaders (represented to the 
right)

• Firmware size Reduction
⎻ Removal of DXEs that are no longer needed
⎻ Reduction of Kernel & initramfs size

• Upstream 
⎻ Contribute refence code and platforms to EDK2
⎻ Update LinuxBoot Resources Repo as work progresses

• Investigate LBBR-Vn features
⎻ Payload Package?
⎻ Alterative hardware initialization firmware? 

OPEN SYSTEM 
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Recap
Review 
⎻ SystemReady and SystemReady LS
⎻ LinuxBoot

Standards for SystemReady LS
⎻ LBBR-V1 & LBBR-Vn

SystemReady LS V0.9
⎻ Certification requirements and processes

System Showcase
⎻ Showcase production systems
⎻ Showcase of proof of concepts (PoC) systems and resources
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Arm SystemReady and LinuxBoot resources:

• SystemReady Certification Program Website

https://www.arm.com/systemready-certification-program

• Arm LinuxBoot PoCs, Code changes, video demos

https://gitlab.arm.com/systemready/linuxboot-resources

• SystemReady-LS-template Repo for SystemReady certation procedure and guidance

https://gitlab.arm.com/systemready/systemready-LS-template

• Contact systemready@arm.com

• Speaker Jeff.Booher-Kaeding@arm.com

Reach out, get involved! OPEN SYSTEM 
FIRMWARE

https://www.arm.com/systemready-certification-program
https://gitlab.arm.com/systemready/linuxboot-resources
https://gitlab.arm.com/systemready/systemready-LS-template
mailto:systemready@arm.com
mailto:Jeff.Booher-Kaeding@arm.com

