Open. Together.
Exploiting the true potential of At-Scale debug

Sumeet Kochar, Lenovo
Theodros Yigzaw, Intel
Gundrala Devender Goud, MSFT
The Only Good Downtime is NO Downtime

- Cost of downtime is big in terms of $ but it is not just $
- Downtime analysis should also consider “gray failures” – infrastructure up but not performing as expected
- Right data = “telemetry” from the systems is key to weeding out such issues before they persist and become a problem at scale
- Historical data is as important as data at the point to failure
- This presentation will dive into a reference implementation for server debug at scale – *much more than JTAG connection to host chipset from BMC to mimic an In Target Probe at scale*
Platform hooks for Debug at Scale?

OPEN SYSTEMS FIRMWARE

Reference Architecture

Processor

Processor

Board Management Controller (BMC)
- Small footprint
- JTAG built in

JTAG Controller
- Encrypted debug data

Debug Access Port
- TMS
- TCLK
- TDI
- TDO

IO device sensors over I2C/MCTP

Platform level sensors

PECI VS. JTAG
- PECI – can access MSRs w/o stopping CPU (recommended for runtime monitoring). Data is subset of what can be collected over JTAG.
- JTAG – requires CPU to be halted for MSR access but can provide richer data set (recommended to debug hangs, crash due to IERR etc.)

Higher management software layer of infrastructure owner choice
Target Capabilities

• Failure Prediction
 • Access to telemetry data (e.g. memory rd/wr bandwidth, cache allocation, power control events …etc.) for predicting Gray Failures
 • Predicting failures based on environmental conditions (high temperature, voltage …etc.)

• Failure Diagnosis
 • Some failures are hard to reproduce in a lab environment
 • Happen only at-scale in a given context, running a given workload in a given environment
 • Collecting failure and telemetry data at the point of failure is essential to diagnosing them faster and more accurately
 • Encrypted extraction of Intel micro-architectural state is key for certain hard-to-diagnose failures.
Data Analysis at the edge or at higher level?

BMC as the hub of telemetry

First Failure Data Repository with limited history

Push policy down to the BMC statically or on-demand

Important to do local analysis of data where it makes sense e.g. monitoring of Correctable errors against a threshold, IERR analysis etc.

Higher management software layer of infrastructure owner choice

Surface snapshot of X hrs of monitored data at a sampling rate of Y to higher level software e.g. power and utilization, performance monitoring

OPEN SYSTEMS
FIRMWARE

First Failure Data Repository with much larger history

Reference Architecture

OCP SUMMIT
Open. Together.
Types of telemetry possible

- BMC as the hub of telemetry
- Trained algorithms for detecting CPU access anomalies
- Utilization and power consumption
- Debug at Scale
 - “Gray Failures”
 - Crash dumps
 - Perf

BMC as the hub of telemetry

Trained algorithms for detecting CPU access anomalies

Utilization and power consumption

Debug at Scale
- “Gray Failures”
- Crash dumps
- Perf

Reference Architecture
Visual mapping of telemetry w/ plugins
ASD – Cloud Use Models

• Runtime Monitoring – Reliability & Availability
 • Secured Telemetry – non-intrusively pull heart-beat data from remote nodes
 • Perform Predictive Analysis and take proactive actions to migrate customers’ workloads to new machines
 • Compute Workloads: Multi-tenant Stateless computing - Availability is key
 • Storage Workloads: Stateful computing/pass through – Data Retention, Protection and Storage – Reliability is key

• Downtime Analysis - Serviceability and Diagnosablity
 • Remote OOB Debug interfaces required
 • FRU identification for expedited root-cause and part replacement tools/interfaces
 • Multi-tenant serviceability could be a challenge
Call to Action

• Provide feedback on the high level idea – BMC centric vs. host centric

• Welcome thoughts on type of telemetry that is of importance

• We plan to start contributing this framework to OpenBMC by end of this year. Help review and extend capabilities when available.
Open. Together.

OCP Global Summit | March 14–15, 2019