Securing Private Keys in Edge Datacenters

Manish Dave, Principal Engineer, Intel
Problem Statement

• Software based private key protection is not sufficient
 • Platforms in Edge datacenters have larger attack surface
 • Hardware Security Modules (HSM) are cost prohibitive, do not scale easily, not suitable for every Edge Compute node
 • TPM based implementations may not provide full (in memory runtime) protections and have deployment limitations on Edge, Virtualization and multi-tenancy
Intel SGX removes the privileged software (OS, VMM, SMM, devices) and unprivileged software (Ring 3 applications, VMs, containers) from the trust boundary.

- Encrypts memory to help protect against memory bus snooping and cold boot attacks for enclave code and data in host DRAM.
- Provides Hardware Based Remote Attestation.
Why Aren’t Platforms Trustworthy?

Protected Mode (rings) protects OS from apps ...

App

Protected Mode

App

OS
Why Aren’t Platforms Trustworthy?

Protected Mode (rings) protects OS from apps ...

... and apps from each other

...
Why Aren’t Platforms Trustworthy?

Protected Mode (rings) protects OS from apps ...

... and apps from each other

... UNTIL a malicious app exploits an OS flaw to gain full privileges and then tampers with the OS or other apps
Why Aren’t Platforms Trustworthy?

Protected Mode (rings) protects OS from apps ...

... and apps from each other

... UNTIL a malicious app exploits an OS flaw to gain full privileges and then tampers with the OS or other apps

Applications are not protected from privileged code attacks
Allowing App Developers to Secure Data
Allowing App Developers to Secure Data

Intel® SGX provides a safe place for code and data in the application

![Diagram showing Intel SGX providing secure execution space within an application and the operating system.](image-url)
Allowing App Developers to Secure Data

Intel® SGX provides a safe place for code and data in the application

Undetected malicious software cannot access secrets

Secrets are protected from bad actors with access to the platform
Allowing App Developers to Secure Data

Intel® SGX provides a safe place for code and data in the application.

Undetected malicious software cannot access secrets.

Secrets are protected from bad actors with access to the platform.

Need a safe as well as guards.
Reducing the Attack Surface with Intel® SGX

Attack surface for legacy platforms

- App
- App
- App
- OS
- VMM
- Hardware

Attack Surface
Reducing the Attack Surface with Intel® SGX

- Application can defend its own secrets
- Small attack surface (Application’s private areas + HW)
Reducing the Attack Surface with Intel® SGX

- Application can defend its own secrets
- Small attack surface (Application’s private areas + HW)
- Malware that subverts any other SW component unable to steal app secrets in private areas
Edge Platform Key Protection

Use-Case: Private key Protection on Edge Compute platforms using Hardware TEE

Hardware: Intel Icelake Platform with Intel Software Guard Extension (SGX) enabled

Software:
1. Existing Applications consuming keys (for e.g.: NGINX)
2. PKCS #11 Interface on standard crypto library, e.g.: OpenSSL
3. SGX Enablement (UEFI BIOS, OS)^1
4. Crypto API Toolkit for Intel® SGX based on SoftHSMv2 ^2

^1 - only for provisioning, resource allocation, management, outside of trust boundary
^2 - https://github.com/intel/crypto-api-toolkit - reference implementation
Architecture SGX Based Key Protection

Platform Attestation and Private Key Flow
Infrastructure Enclaves attest Platform, CPU, TCB Level, Identity and integrity of key protection enclave along with hash of session public key ^1

1. TEE (on Edge Compute Node) generates attestation quote and sent to server over secure channel
2. After successful verification, attestation server wraps private keys ^2 and sends resulting wrapped keys over secure channel to be used by TEE on Edge Compute Node
3. TEE on Edge Compute Node unwraps keys and secures inside the enclave

Private Key Operations always executed inside TEE
- Key pair tokens provisioned and stored in TEE after successful attestation, authentication and authorizations: Private key is never exposed in the clear outside of TEE
- Application (e.g.: NGINX) request use of the key via OpenSSL Libp11 engine (PKCS#11 API)

^1 Session Keys used for wrapping are destroyed after unwrapping when the session ends
^2 Could use a centralized Key Management Service, Private HSM or Cloud HSM
Reference Implementation

1. SGX Enclave Launch with Attestation
2. Customer Key Delivery into Enclave
3. Application (e.g.: NGINX) uses Key Protected Keys inside Enclave

Legend:
- Open Source
- Intel Reference Software
- Customer Trusted Enclave
- SGX Driver
- Linux Operating System
- BIOS
- 3rd Generation Intel® Xeon® Scalable Processor
Summary and Recommendations

Summary
- Scalability: Solution can scale to any number of Edge Compute Nodes
- Performance: Since only key operations are moved to TEE, data path is not impacted (Throughput latency, connections etc.)
- Security: HW TEE Protection removes most attack scenarios (vs. keys in clear in memory during runtime), Reduces attack surface and removes most of SW, privilege FW, OS/Kernel etc. from trust boundary

Operational Recommendations
- Keep all security (for example key protection code base) as small as possible and secure (remember app itself is still in trust boundary!)
- Follow secure software development guidelines
- Test for software attacks and side channel resistance
Call to Action and Additional Information

Get Involved: Opensource libraries and reference implementation links below

Opensource reference Software and Hardware Platforms: Available Now

- **https://github.com/intel/crypto-api-toolkit** - Crypto API Toolkit for SGX
- **https://github.com/intel/SGXDataCenterAttestationPrimitives** - SGX Attestation Libraries
- **https://github.com/cloud-security-research/sgx-ra-tls** - SGX remote attestation with TLS connection setup
- **https://github.com/intel/sgx-ra-sample** - Remote Attestation Sample
- **https://github.com/intel/intel-sgx-ssl** - SGX SSL reference implementation

Additional Information

- **https://download.01.org/intel-sgx/latest/linux/latest/docs/** - SGX Documents
- **https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html#combined** – Intel® 64 and IA-32 Architectures Software Developer Manuals
- **https://01.org/sites/default/files/downloads/intelsgxnginxprivatekey3rdgenintelxeonspuserguide634677v1.pdf**
- **https://01.org/sites/default/files/downloads/intelsgxkeymanagement3rdgenintelxeonspotechguide635272v1-1.pdf**
Acknowledgement

Kapil Sood: Principal Engineer, Intel - CPU, Platform and Security Architect
Lead for Key Management Reference Architecture (KMRA) project at Intel

Key Contributors
Veronika Karpenko
Jon Strang
David Lu
Darragh Coen

OPEN POSSIBILITIES.
Thank you!