Open. Together. OCP オナナナイド

DO-160 and Twin lakes Servers

Nicolas Roels

Director, Hardware Technologies
Thales

Jean-Marie Verdun

CTO ITRenew

THALES

A worldwide leader, with 64,000 employees, a yearly revenue of 16B \$US serving

We help customers master decisive moments by providing the right information at the right moment

ITRENEW

- Leading provider of circular data center solutions to the hyperscale cloud market: technology, logistics, monetization
- Leading global provider of technology -enabled data center decommissioning services, including data sanitization software and IT asset remarketing
- Manufacturer of Sesame open compute and storage solutions, 1st of its kind suite of recertified and warrantied solutions for global use cases

Delivering TCO value recovery > \$1Billion to date

Redefining and powering LTV (a.k.a. not your grandfather's ITAD)

Where do we stand ...

Computing is everywhere

But it didn't happened in a day

Proprietary computing solution COTS and integration Open Hardware? '80s and before 90's 00's Next... WiFi, stronger user Electro Higher experience mechanical Full electrica l computing solution, the power for Higher computing command pioneer age inflight control needs to accelerate fuelefficiency

DO-160

- Well known (if you make fly things) and established standard for environmental testing of airborne equipment
- Covers requirements for critical and non critical functions
- Strong constraints which covers requirements from Edge computing with some "slight" adaptations
- COTS solutions exist currently, do not be a fraid

DO-160 Vs OCP specification overview

Specification (extract)	RTCA - DO160 G Temperature controlled internal section of an aircraft	OCP - Twin Lakes server Specification V1.00	Main effects	Design impacts
Operation Temperature Survival		+15°C/+50°C -40°C/+70°C	Thermal expansion mismatching	Components, materials & Assembly process
variation	2°C/min	Not specified	failures, cracks	Assembly process
Altitude	15 000 ft	6 000 ft	ballooning and radiation effect	Components
Humidity	50°C/95%HR/48h	20% to 90%HR	corrosion, short cut	Design, components, materials & Assembly process
Mechanical Shocks	6g/11ms/3axes	6g/11ms/3axes	detachments, failures, cracks	Design & Connectors
Vibration	5 to 2000Hz 10g peak/1h/3axes	5 to 500Hz 0,3g/10sweeps/3axes	Fatigue, failures, fretting corrosion	Design & connectors
Flammability	non propagation of flame	Not specified	Fire propagation	Component and materials

Single socket vs Dual sockets

- In-flight redundancy is key
- Power a vailability is under massive constraint
- In some cases algorithms predictability and proof are required

Let's keep thing simple and focus on single socket

Twin lakes

What is next and where are the bottlenecks?

- We can probably overcome most of the technical issues
- Open hardware is addressing some of our next challenges
 - Progress on « Moore Law 2.0 » (with power efficiency)
 - Provide trust on Security (through a white box approach)
 - Ensure Long term availability (with Open Source Firmware and schematic/BOM fully released)
 - Reduce costs (NRC and RC through collaboration and volume)
- There is a need to:
 - Build proof of concepts with new hardware

Open issues and progressing together

- Thales is using OCP hardware provided by ITRenew/Sesame.
- This covers part of the supply chain but current OCP partners business goals are not aligned with Aerospace constraints.
 - Low volume, long term availability, etc.
- How to overcome it together?

Call to Action

- Contribute to design ruggedization and standardization
- Join ITRenew Open Hardware lab in the bay area (upcoming meetups)
- Contribute to Open Source Firmware initiative
- Provide hardware for testing and build early prototype

Contact us if you are willing to build adapted designs!

