

Software Defined Fabric for OCP-based
Leaf & Spine Switches

Thomas Eklund
VP Marketing and Strategy - Kaloom

[Networking - Software]

Problems with Data Center Networking
• Lacks automation: Too labor-

intensive and error-prone
• Lacks programmability: Prevents

developers from driving innovation
and customers from adding new
services and features themselves

• Not scalable to sustain emerging
applications and evolving
infrastructures

• Too expensive and doesn’t leverage
white boxes

• Lacks openness: Tightly integrated HW
and SW, proprietary APIs

• High end-to-end latency
• Unable to guarantee isolated virtual

networking slices
• Lacks proper support for IPv6
• Resource-inefficient: power, compute,

networking resources, engineering
personnel

Open Networking
Standards-based

Standard Linux-based

• No kernel patches

• Updates in tandem with compute and storage

• Interfaces towards widely deployed
orchestration systems and SDN controllers

• Plugins for OpenStack, Kubernetes, and
OpenDaylight

Open APIs

• NETCONF API based on YANG models

Open-source friendly

•Contributing improvements upstream to Linux and
Kubernetes

Open networking support

•No vendor lock-in

•White box friendly

▪Certified with switches from multiple ODMs

NETWORKING

Open Networking HW

• Disaggregate the appliance model

▪ Separate SW from HW

• Challenges are standardization to drive adoption

▪ OCP is becoming the leading standard for DC networking

▪ $2.5 billion market today (excluding FB and MS), and will grow to $10 billion
in three years

• Commoditizes the networking HW to drive down cost

▪ Commoditizes the networking chipsets, white boxes and PODs

NETWORKING

Open Hardware Example
Wedge100BF-32Q/65X Switch Bare Metal Switch from EdgeCore

• OCP Accepted, cost-effective, bare-metal switch infrastructure for data center
fabric

• Designed with programmable Tofino switch silicon from Barefoot Networks and
XEON-D host processor

• Deploys as Leaf or Spine switch supporting 10GbE, 25 GbE,
50GbE,or 100GbE ports

• Layer 2 or Layer 3 forwarding of 3.2/6.4 Tbps (full duplex)

• Hot-swappable, load-sharing, redundant AC or 48V DC PSUs

• 5/10 redundant, hot-swappable fan modules

OCP Accepted Switch example

One System Management Approach
Server like Management

No need for a specialized Linux distribution
for switches

Feature Traditional Networking OS RHEL CoreOS

Un-modified Linux Kernel capable of

supporting Secure-boot NO YES

Install via

ONIE

YES YES

Minimum Linux

Footprint

NO

(> 4GB DDR)

YES

(>1GB DDR - lightweight)

Automatic SW Upgrade with Rollback NO YES

(RPM_OSTREE)

Based on SE-Linux No… for most of them YES

(Secure)

Optimized for containers NO YES

DevOps env NO YES

Fabrics (physical DC) vs vFabrics (virtual DC)
Elastic Network Virtualization and slicing

server server

Fabric-1

spine spine spine spine spine spine

leaf leaf leaf leaf leaf leaf leaf leaf leaf leaf leaf leaf

Fabric-2 Fabric-3

vFabric-A vFabric-B vFabric-C

• A vFabric is a fully elastic

isolated network domain
•Provisioned in software

•Collection of termination points

towards WAN and servers

• A vFabric is a logical switch
•Delivers integrated NW services

•Can be part of a virtual data center

(vDC)

• A vDC operator offers cloud

services
•Can host millions of cloud service

users (e.g. tenants)

Why a programmable data plane?
• It takes too long for the introduction of new functions on traditional fixed functions Ethernet ASICs

• Because there are too many needed functions not supported on current fixed functions Ethernet ASICs

▪ Virtual datacenters (e.g. vFabric): Complete isolated broadcast domain

▪ In-band Network Telemetry

▪ Segment Routing IPv6

▪ Geneve (e.g. 24 bits and 32 bits ID)

▪ GPRS Tunneling Protocol user-plane for 4G and 5G

▪ Etc...

• Because data center operators don’t want to replace hardware to introduce new network capabilities

▪ Needs network versioning using slicing

What is P4 and why it matters?
• A high-level programming language intended for packet processors

• Packet processors include Programmable ASICs such as Barefoot Tofino, FPGAs,
and CPUs such as Intel XEON

• Keeps the programming language independent of the hardware

▪ Contributes to the portability of data plane applications

• P4 is meant to describe/specify the behavior of the data plane application but not
how the data plane is actually implemented

https://p4.org/

Main issues with data plane application

• CPUs introduce too much latency for incoming 5G Networks

• CPUs provide too low throughput for packet processing applications executing on XEON
processors simultaneously serving large number of connected 4G and 5G devices
▪Operators requirement: Over 500K devices/sessions per dual sockets servers

▪Reality: Good performance until there is a maximum of 40K connected devices or active sessions per
XEON Scalable

▪Beyond such numbers, CPU is running out-of-cache with a radical drop in packet-rate

• The cost per connected 5G device resulting from a CPU-based Networking Function is
too expensive for numerous incoming 5G applications

• Hardware accelerators can provide a significant cost/performance advantage over
CPUs for running data plane applications…at-scale

Emerging Container Network Functions

Container
Network
Function

(CNF)

Network Function
Control Plane

Network Function
Control Plane

XEON

Control Plane
Go, C, C++

Kubernetes
application

Barefoot

P4 Data Plane application

P4
Component 1

Stratix 10 MX

P4
Component 2 XEON

P4
Component 3

Barefoot

P4
Component 1

In Out

+

example

+

DC Fabric Configuration

Programmable

Spine Switches

Programmable

Leaf Switches

Storage and

Application Servers

SDN Controller

Data

Network

Edge Switches
To Other PODs / DCs / Clouds

Distributed Fabric Control Plane

Storage and
Application Servers

EdgeEdgeLeaf LeafLeafLeafSpine Spine

RHEL CoreOS

RedHat OpenShift Container Platform

KaloomTM Distributed Container-based control plane (N+M redundancy)

• Kubernetes Go-based components
• Scalable cluster
• Fully multi-threaded
• All active nodes
• Redundant

A typical Physical Data Center Fabric
Configuration

Application

servers

Rack

Application

servers

Rack

Networking

Rack

Edge

Switches

Spine

Switches

Fabric

Controllers

Leaf

Switches

Kaloom Software Defined FabricTM Highlights

Fully Programmable

Future-proof networking

Fully virtualizable

Fabric Slicing (vFabric)

Dataplane Acceleration

vSwitch Offload

Autonomous

Self-Discovering/

Self-Forming

Integrated vRouter White box support from

multiple vendors, OCP

1
2 3

4 5 6

Upstream contributions in k8s/Linux

• Please join KaloomTM to work collaboratively in open
networking

• Kubernetes and CNI networking improvements in CNF

• KVS and networking improvements in Linux

https://github.com/kaloom/kubernetes-podagent

https://github.com/kaloom/kubernetes-kactus-cni-plugin

https://github.com/kaloom/kubernetes-podagent
https://github.com/kaloom/kubernetes-kactus-cni-plugin

Summary of future DC networking requirements

• Open Networking

• OCP based HW

• Programmable

• Fully Automated

• Standard Linux

• Server Style Mgt of networking

• Containerized

