

**Redefining Computing Architecture Boundaries with Off Package Chiplets** An Energy Centric Computing Perspective **.....** 1901101010001101 1001101000110001 Allan Cantle - 6/16/2022 000001101010100000 **0-0110101000110**21 101101000110001



### What's driving Computing Architecture Power & Cost Efficient Domain Specific Architectures, DSA



#### What's driving Computing Architecture Power & Cost Efficient Domain Specific Architectures, DSA



Fixed Architecture



**Dynamic Software** Composability

Hard Physical Composability

### DSA Composability

**Pluggable Physical** Composability





#### What is the Motivation for Chiplets? Efficiently Combining Compute & Data in Pursuit of Performance

- Computer Architecture is JUST Compute & Data!
  - & Circumventing the Von-Neumann Bottleneck
- Improving Data to Compute Movement Efficiency
  - Moores Law....shrinking everything
  - Bringing Memory on chip Caching
  - Heterogeneous Processors
  - Moving everything closer together
    - Chiplets in a package.....2D, 2.5D & 3D

ompute & Data! ann Bottleneck ement Efficiency

her 2.5D & 3D

4







NALLA

### But what about Off Package IO? System size rarely shrinks with higher density packaging!

- From ~0.5pJ/bit chiplet IO Energy
  - To ~10pJ/bit System IO Energy
    - A 20x off package increase!
- But there is the Promise of Co-Packaged Optics
- Ultimately we want Highest System Performance at the Lowest Energy & Cost
- Lets take a closer look at the data



## Popular PHY IO Standards

| PHY Name                        | Substrate Type     | Ch. Speed<br>Gb/s | Tbits/s/mm<br>Beachfront Tbits/s | Reach<br>mm | Energy<br>pJ/bit | Possible<br>Chiplet IO | Possible Off<br>Package IO |  |
|---------------------------------|--------------------|-------------------|----------------------------------|-------------|------------------|------------------------|----------------------------|--|
| Traditional QSFPxx Optical IO   | Organic            | 112               | Same as PHY                      | 100,000's   | 15               | ×                      | $\checkmark$               |  |
| * PCIe-G5 Reference             | Organic            | 32                | 0.22                             | 973         | 7                | ×                      | $\checkmark$               |  |
| <b>DDR Memory Ch. Reference</b> | Organic            | 6.4               | 0.06                             | 300         | 5                | ×                      | $\checkmark$               |  |
| Silicon Photonics               | Any                | Tb/s              | Same as PHY                      | 100,000's   | 1                | ×                      | $\checkmark$               |  |
| * OIF - VSR                     | Organic            | 40                | 1.1                              | 160         | 1.5              | $\checkmark$           | $\checkmark$               |  |
| * BoW Fast                      | Organic            | 16                | 1.0                              | 25          | <0.5             | $\checkmark$           | X                          |  |
| <b>† UCIe - Standard</b>        | Organic            | 32                | 1.8                              | <25         | 0.5              | $\checkmark$           | X                          |  |
| * OpenHBI                       | Silicon Interposer | 8                 | 3.4                              | 8           | 0.5              | $\checkmark$           | X                          |  |
| <b>† UCIe - Advanced</b>        | Silicon Interposer | 32                | 10.5                             | <2          | 0.25             | $\checkmark$           | X                          |  |

Slide ACHPC'19 - Prospects for Memory - J. Thomas Pawlowski - Slide 29

6 \* ODSA PHY Spreadsheet

† <u>UCIe Whitepaper</u>





NALL

### **On and Off Package Memory Configurations** Traditional Local Memory + RDMA Example



|                                         | 80GB                  |                | 3TB                   |                | 8TB                   |                | 16TB+                 |           |
|-----------------------------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------|
| Example                                 | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Pov<br>Wa |
| Traditional Local Memory + RDMA Example | 0.6                   | 49             | 0.6                   | 49             | 0.6                   | 373+           | 0.6                   | 37        |
|                                         |                       |                |                       |                |                       |                |                       |           |
|                                         |                       |                |                       |                |                       |                |                       |           |
|                                         |                       |                |                       |                |                       |                |                       |           |
|                                         |                       |                |                       |                |                       |                |                       |           |



ver

tts

3+

### **On and Off Package Memory Configurations** CXL Shared Memory Example



| 80GB                  |                                          | <b>3TB</b>                                                                              |                                                                                        | 8TB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          | 16TB+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------|------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bandwidth<br>TBytes/s | Power<br>Watts                           | Bandwidth<br>TBytes/s                                                                   | Power<br>Watts                                                                         | Bandwidth<br>TBytes/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Power<br>Watts                                                                                                                           | Bandwidth<br>TBytes/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pov<br>Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.6                   | 49                                       | 0.6                                                                                     | 49                                                                                     | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 373+                                                                                                                                     | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                     | 24                                       | 2                                                                                       | 848                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 848                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       |                                          |                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                                          |                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                                          |                                                                                         |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | 800<br>Bandwidth<br>TBytes/s<br>0.6<br>3 | 8OGBBandwidth<br>TBytes/sPower<br>Watts0.6493240.10.00000000000000000000000000000000000 | 80GB31Bandwidth<br>TBytes/sPower<br>WattsBandwidth<br>TBytes/s0.6490.63242111111111111 | 80GB3TBBandwidth<br>TBytes/sPower<br>WattsBandwidth<br>TBytes/sPower<br>Watts0.6490.6493242848Image: Second | 80GB3TB80Bandwidth<br>TBytes/sPower<br>WattsBandwidth<br>TBytes/sPower<br>WattsBandwidth<br>TBytes/s0.6490.6490.632428482111111111111111 | 80GB3TB8andwidth<br>Power<br>TBytes/sPower<br>Bandwidth<br>TBytes/sBandwidth<br>Power<br>WattsPower<br>Watts0.6490.6490.6373+32428482848111111111111111111111 <td< th=""><th>80 ∈ ICOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNT<t< th=""></t<></th></td<> | 80 ∈ ICOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNTCOUNT <t< th=""></t<> |





#### **On and Off Package Memory Configurations** CXL Shared Memory Example with Co-Packaged Optics



|                                         | 80GB                  |                | 3TB                   |                | 8TB                   |                | 16TB+                 |           |
|-----------------------------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------|
| Example                                 | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Pov<br>Wa |
| Traditional Local Memory + RDMA Example | 0.6                   | 49             | 0.6                   | 49             | 0.6                   | 373+           | 0.6                   | 37        |
| <b>CXL Shared Memory Example</b>        | 3                     | 24             | 2                     | 848            | 2                     | 848            | 2                     | 84        |
| SiP CXL Shared Memory Example           | 3                     | 24             | 2                     | 448            | 2                     | 448            | 2                     | 44        |
|                                         |                       |                |                       |                |                       |                |                       |           |
|                                         |                       |                |                       |                |                       |                |                       |           |







#### **On and Off Package Memory Configurations** CXL Shareable, Local Memory using OIF-VSR Example



|                                         | 80GB                  |                | 3TB                   |                | 8TB                   |                | 16TB+                 |           |
|-----------------------------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------|
| Example                                 | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Pov<br>Wa |
| Traditional Local Memory + RDMA Example | 0.6                   | 49             | 0.6                   | 49             | 0.6                   | 373+           | 0.6                   | 37        |
| <b>CXL Shared Memory Example</b>        | 3                     | 24             | 2                     | 848            | 2                     | 848            | 2                     | 84        |
| SiP CXL Shared Memory Example           | 3                     | 24             | 2                     | 448            | 2                     | 448            | 2                     | 44        |
| CXL Shareable, Local Memory Example     | 3                     | 24             | 2                     | 208            | 2                     | 208            | 2                     | 65        |
|                                         |                       |                |                       |                |                       |                |                       |           |





### **On and Off Package Memory Configurations** Optical, CXL Shareable, Local Memory using OIF-VSR Example



|                                         | 80GB                  |                | 3TB                   |                | 8TB                   |                | 16TB+                 |           |
|-----------------------------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------|
| Example                                 | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Power<br>Watts | Bandwidth<br>TBytes/s | Pov<br>Wa |
| Traditional Local Memory + RDMA Example | 0.6                   | 49             | 0.6                   | 49             | 0.6                   | 373+           | 0.6                   | 37        |
| <b>CXL Shared Memory Example</b>        | 3                     | 24             | 2                     | 848            | 2                     | 848            | 2                     | 84        |
| SiP CXL Shared Memory Example           | 3                     | 24             | 2                     | 448            | 2                     | 448            | 2                     | 44        |
| CXL Shareable, Local Memory Example     | 3                     | 24             | 2                     | 208            | 2                     | 208            | 2                     | 65        |
| SiP CXL Shareable, Local Memory Example | 3                     | 24             | 2                     | 208            | 2                     | 208            | 2                     | 30        |

Data Movement Energy shown in Red - Assume CXL Shared Memory Buffer & CXL Switch Power insignificant compared to their IO power 11





# Energy Advantage of Off-Package Chiplet Shared Memory Buffers





#### Can UCIe Standard or BoW support HBM? BoW & UCIe-Standard for HBM with Organic packages

- HBM = 11mm beachfront + roadmap to 1.1TB/s
  - Requires 1.1TB/s \* 8 / 11mm = 0.8Tb/s/mm
    - UCIe-Standard & BoW can support HBM using organic substrates



ap to 1.1TB/s STb/s/mm Sport HBM



UCIe-S / BoW Beachfront





#### **Proposed Chiplet Industry Standardization** Accessible to Tier 2 and 3 Industry Players

- Leverage Cost effective Organic Packaging
- Utilize BoW & OIF-VSR PHYs for On & Off Package Chiplet IO's respectively ightarrow
- Unifying Off Package IO for ALL Processors WILL Democratize Compute ullet





#### **Proposed Chiplet Industry Standardization** Accessible to Tier 2 and 3 Industry Players

- - For differing IO Use Cases
- OCP HPCM 3D System Level Packaging



Novel Pluggable Chiplet 3D System Level Packaging<sub>5</sub>





- Today's Disaggregation Models are taking Energy Efficiency in the wrong direction Insight through Energy Centric Compute Analysis
- Support of an off-package Chiplet IO Standard will allow :-
  - Graceful Power and latency increase
- This Presentation ONLY assessed Off-Package Chiplets from an Energy Saving Perspective. Several other significant benefits accrue :-
  - Low Latency to Large Capacities at High Bandwidths
  - Flexible, Modular and Composable
  - Lower cost and improved manufacturability
  - Simpler, Sustainable and Competitive Ecosystem Business Model

### Summary

