Open. Together.

Advanced Cooling Solutions

Liquid Cooling Trends

Husam Alissa, Datacenter Infrastructure Architect Brandon Rubenstein, Director of Engineering

Microsoft

Open. Together.

Advanced Cooling Solutions (ACS)

Project Wiki with latest specification: <u>https://www.opencompute.org/wiki/Rack_%26_Power/Advanced_Cooling</u> <u>Solutions</u>

ACS Door Heat Exchange ACS Cold Plate ACS Immersion Cooling

Please join the group and help develop the harmonization standards that will enable advanced cooling solutions for Open Compute solutions.

Olympus Today

- •Front to Rear Forced Convection Air Cooled
 - •Air Cooled Power Supplies
- •Remote Heatsink with Heat Transport through Heat Pipes
- •Capable of cooling over 1kW in 1RU
- •Power density of the chips and/or fan power consumption present limitations to the thermal solution.

Agenda

- Chip Technology Trends
- Chip to Data Center Motivation
- Olympus, a liquid cooling friendly server:
 Direct Attached-Microchannel cold plates (Hybrid)
 Single Phase Blade Immersion
 Single Phase Bath Immersion
 Two Phase Bath Immersion
 Other Techs
- OCP ACS
- Recommendations

Trends: Chip Power and Temperature Requirements

Nvidia DGX-2, 10 kW

Holistic Chip to Data Center Motivation

Enables Density

Future trend processors Reduce footprint TCO

Lower PUE 4000x thermal capacity compared to air Enables Energy recovery Reduction in water use

Climate agnostic

Competitive advantage

Enabling future CPUS, FPGAs, GPGPUs and other architectures (>300W/chip)

Simplifies and improves interconnects

Olympus Today

- •Front to Rear Forced Convection Air Cooled
 - •Air Cooled Power Supplies
- •Remote Heatsink with Heat Transport through Heat Pipes
- •Capable of cooling over 1kW in 1RU
- •Power density of the chips and/or fan power consumption present limitations to the thermal solution.

Direct Attached-Microchannel cold plates (Hybrid)

Direct Attached-Microchannel cold plates (Hybrid)

Single Phase Blade Immersion

Single Phase Bath Immersion

1. Heat Sinks pulled

2. CPUs removed

3. Previously installed indium foil removed & heat sinks reinstalled, bare chip to heat sink contact

Indium foil TIM2

Two Phase Bath Immersion

2P Immersion cooled Gen6

Project Olympus

- The expansion of the Project Olympus platform will help to further broaden the range of potential uses for the platform.
- Microsoft and our development partners are displaying the hardware at the OCP conference for cloud-based platform review and evaluation.
- More standardization
- Less proprietary more commoditized

Advanced Cooling Solutions (ACS)

Project Wiki with latest specification: <u>https://www.opencompute.org/wiki/Rack_%26_Power/Advanced_Cooling</u> <u>Solutions</u>

ACS Door Heat Exchange ACS Cold Plate ACS Immersion Cooling

Please join the group and help develop the harmonization standards that will enable advanced cooling solutions for OpenCompute solutions.

Open. Together.

OCP Global Summit | March 14–15, 2019

