
SAI Challenger:
The SONiC-Based Framework 
for SAI Testing and Integration



SAI Challenger:
The SONiC-Based Framework 
for SAI Testing and Integration

Andriy Kokhan
Networking Solutions Architect, PLVision

Networking



About PLVision
NETWORKING

• Networking software development company based in Poland and Ukraine

• Focused on integration and development of Network Operating Systems

• Many years of collaboration with leading switch silicon vendors

• Vast experience with SONiC and SAI

• Contributor to ONF's Stratum

• New Community Member to OCP



Network Disaggregation
NETWORKING

New benefits:

• openness – free access to sources
• standardization – availability of specifications
• diversification – freedom of choice

New challenges (freedom is not free):

• integration – interoperability and new components
• validation – who? when? how?
• maintenance – components update, release cycle

OR



SAI as a Crucial NOS Component
NETWORKING

NOSSAI Testing

Can we make SAI testing 
even more efficient?

SAI defines a vendor-independent way of controlling 
forwarding elements in a uniform manner.

Usually, we test SAI as an 
independent component through 
the Thriftified Python interface.



SONiC Architecture
NETWORKING

• Orchagent – converts configuration 
from SONiC applications representation 

into SAI representation and writes it into 
ASIC DB.

• ASIC DB – the only 
communication channel between SyncD
and SONiC applications.

• SyncD – SONiC daemon that uses 
vendor SAI to configure a switching 
silicon.

Thick NOS
(SONiC Apps)

Thin NOS
(SONiC Lite*)



SONiC Platforms
NETWORKING

Thick NOS
(SONiC Apps)

Thin NOS
(SONiC Lite*)

• Normally, the same SONiC
applications are used by all SONiC
platforms.

• Each SONiC platform uses its own 
docker-syncd-<platform> image.

• Still the same SyncD sources are 
used by all SONiC platforms.



SAI Challenger
NETWORKING

SAI Challenger

Docker-based environment with 
pre-installed Redis DB and SyncD 

SONiC application + CRUD API.

Thin NOS
(SONiC Lite*)

• SyncD – an application that uses 
vendor SAI to configure a switching 
silicon.

• Redis DB – as a northbound API.

• Simple CRUD API to operate on SAI 
data in ASIC DB.

• pyTest – as a framework for TCs 
development and execution.

• PTF to send/receive packages over 
the dataplane.



Use Cases
NETWORKING

Development

Testing

Debugging

Simplified networking applications prototyping 
due to the native integration with SONiC –
the SDN-like approach with syncd as a Thin NOS.

SAI integration and testing in one shot.
"Pure SAI" test cases code with no extra wrappers.
TCs development on top of SONiC libsaivs (no HW).

Ease of reproducing the user scenarios based on 
SONiC sairedis.rec files. Simple CLI for SAI debugging.



Operation Modes
NETWORKING

The standalone mode - both SyncD 
and pyTest are running in the same 
Docker container.

The client-server mode - SyncD and 
pyTest are running in the separate 
Docker containers.

https://github.com/PLVision/sai-challenger/blob/main/docs/standalone_mode.md
https://github.com/PLVision/sai-challenger/blob/main/docs/client_server_mode.md


High-Level Architecture
NETWORKING

Three layers of abstraction:

1. The basic class Sai interfaces to Redis DB and 
defines generic CRUD API.

2. The SAI switch type abstraction:
• SAI_SWITCH_TYPE_NPU
• SAI_SWITCH_TYPE_PHY

3. The concrete NPU/PHY abstraction.

SAI Platform Plugins

Sai

+cleanup ()
+operate ()
+create ()
+remove ()
+set()
+get()
+apply_rec()

SaiNpu

+init()
+reset()
+bulk_create()
+bulk_remove()
+flush_fdb_entries()
+get_stats()
+clear_stats()

-oid

SaiPhy

TBD:

SaiNpuImpl

+reset()

SaiNpuImp

TBD:

SaiNpuImpl

TBD:



Types of Testing

Unit testing – SAI testcases with no traffic running. E.g.:

• per SAI object's attribute get/set/get operations;

• SAI objects scaling testing;

• SAI object's attributes negative testing;

Functional testing – SAI testcases that implement simple networking scenarios for the 

specific SAI objects (FDB, VLAN, RIF, etc.). These TCs test the dataplane by running traffic 

with scapy utility.

Integration testing – SAI testcases that are based on sairedis.rec files either generated by 

SONiC Orchagent or manually written.

NETWORKING



Unit Testing

@pytest.mark.parametrize(

"attr,attr_type,attr_val",

[

("SAI_VLAN_ATTR_VLAN_ID", "sai_uint16_t", "100"),

("SAI_VLAN_ATTR_MEMBER_LIST", "sai_object_list_t", "0:null"),

("SAI_VLAN_ATTR_MAX_LEARNED_ADDRESSES", "sai_uint32_t", "0"),

("SAI_VLAN_ATTR_STP_INSTANCE", "sai_object_id_t", None),

("SAI_VLAN_ATTR_LEARN_DISABLE", "bool", "false"),

]

)

def test_get_before_set_attr(npu, dataplane, sai_vlan_obj, attr, attr_type, attr_val):

status, data = npu.get_by_type(sai_vlan_obj, attr, attr_type, do_assert=False)

npu.assert_status_success(status)

assert data.value() == attr_val

NETWORKING



Functional Testing

vlan_mbr_oid = self.create(SaiObjType.VLAN_MEMBER,

[

"SAI_VLAN_MEMBER_ATTR_VLAN_ID", vlan_oid,

"SAI_VLAN_MEMBER_ATTR_BRIDGE_PORT_ID", bp_oid,

"SAI_VLAN_MEMBER_ATTR_VLAN_TAGGING_MODE", "SAI_VLAN_TAGGING_MODE_TAGGED"

])

if npu.run_traffic:

pkt = simple_tcp_packet(eth_dst=macs[1], eth_src=macs[0],

ip_dst='10.0.0.1', ip_id=101, ip_ttl=64)

send_packet(self, 0, pkt)

verify_packets(self, pkt, [1])

self.remove(vlan_mbr_oid)

NETWORKING



Integration Testing

@pytest.mark.parametrize(

"fname",

[

"BCM56850/full.rec",

"BCM56850/hostif.rec",

"BCM56850/acl_tables.rec",

"BCM56850/bulk_fdb.rec",

],

)

def test_apply_sairec(npu, exec_params, dataplane, fname):

npu.apply_rec("/sai/sonic-sairedis/tests/" + fname)

npu.reset()

NETWORKING



… or just do it manually

sai --help

sai create switch \

SAI_SWITCH_ATTR_INIT_SWITCH true \

SAI_SWITCH_ATTR_TYPE SAI_SWITCH_TYPE_NPU

sai get oid:0x21000000000000 SAI_SWITCH_ATTR_PORT_LIST sai_object_list_t

sai get oid:0x1000000000002 SAI_PORT_ATTR_OPER_STATUS

sai stats get oid:0x1000000000002 \

SAI_PORT_STAT_IF_IN_UCAST_PKTS SAI_PORT_STAT_IF_OUT_UCAST_PKTS

sai stats clear oid:0x1000000000002 \

SAI_PORT_STAT_IF_IN_UCAST_PKTS SAI_PORT_STAT_IF_OUT_UCAST_PKTS

NETWORKING



Test Results
NETWORKING



Single Approach for ASIC & PHY
NETWORKING



Call to Action

• Current open-source path: https://github.com/PLVision/sai-challenger
(NOTE: pending review from the community to be moved to OCP Github)

• How to participate:

• Add SaiNpuImpl plugin for your platform under sai-challenger/npu/

• Propose new use cases with SONiC Lite in mind

• Implement new basic topologies under sai-challenger/topologies/

• Extend test scenarios, CLI, core functionality

• Blog post: blog/opensource/sai-challenger-sonic-based-framework

https://github.com/PLVision/sai-challenger
https://plvision.eu/rd-lab/blog/opensource/sai-challenger-sonic-based-framework


Thank you!


