

OCP NIC 3.0 Design and Implementation Experiences

Hemal Shah, Distinguished Engineer/Architect Long Nguyen, Master Hardware Engineer Broadcom Inc.

NIC 3.0 Development

Agenda

OCP NIC 3.0 Design Specification Overview Mechanical Design Electrical Design **Thermal Considerations** Management Firmware Design

Open. Together.

OCP NIC 3.0 Design Specification

Third Generation of NIC specification Defines two form factors: SFF and LFF Supports up to 32 PCIe lanes Primary and Secondary connectors **DMTF standards based Manageability** Security considerations

- Covers single host, multi-root, and multi-host environments

Mechanical Design

- **Evolution of Server NICs**
- A variety of form factors are available today.
- PCIe NICs, NDC's
- Mezzanine cards.
- OCP Mezz 2.0
- OCP NIC 3.0

1x2 1G RJ45

OCP NIC 3.0 CARDS

Mechanical Design (cont'd) $\bullet \bullet \bullet$ SERVER **PCB (115mm x 76mm)** Bracket (s) I/O Types Heatsink LEDs Mylar/Insulation (Backside of PCB) **Specifications**

Mechanical Design (cont'd)

Open. Together.

SERVER

Specifications

Mechanical Design Experience

- **PCB Form Factor**
 - Easy to implement; Similar to PCIe NIC
- Bracket(s)

 - Good to have different bracket options to choose from.
 - Challenging to add air vents some cases.
- Heatsink Design
 - More space than 2.0; Single height restriction makes life much easier \odot .
- Mylar/Insulator
 - Provides good insulation on back side;

Good design but a 'little' challenging; Involve more parts; Hard to procure offshore parts.

Electrical Design

Typical Block Diagram of an OCP NIC 3.0

Open. Together.

Electrical Design - Experience

- Similar to PCIe NIC design with a few new signals.
- Pay attention to BIF and SLOT_ID signals.
- FRU Write Protection is a requirement.
- RBT signals timing (Spec is TBD)
 - Hard to meet max trace lengths (timing); Clock routing;
 - Will be difficult to meet timing for LFF's. -
- Bus isolation requirements on a few signals.
- Shift registers (New)
 - LED status; Board power and temperature status.
- New LED wavelengths requirements (Higher Vf !)
 - Difficult to place LEDs and not blocking airflow!

SERVER

Specifications

Thermal Design

***From OCP v0.85 Spec

- Challenging to meet "Typical Server Airflow" for high power cards
 - → Stay under 200LFM for ~20W card.

$\bullet \bullet \bullet$ $\bullet \bullet \bullet$

Open. Together.

Thermal Considerations (Simulation)

OCP 3.0 Thermal Test Fixture

Figure 118: Thermal Test Fixture Airflow Direction

***3D CAD Thermal Model from OCP Spec

***Actual thermal model

Thermal Considerations (Design)

- Definitely need vents on the bracket! —
- Require adequate heatsink size. -
- Thermal simulation a Must!

Open. Together.

Management

Standards based manageability essential for interop Management Type: Recommend RBT+MCTP Sideband Interfaces: Support concurrency Self-shutdown: Optional but important

- FRU: dual-byte addressing not ubiquitous for small size FRU

Open. Together.

Firmware Design Considerations

Hardware Root of Trust (RoT) Secure boot Secure firmware loading Secure firmware update Encrypt sensitive NVRAM config data

Built in recovery from HW/FW failures

SERVER

Summary

OCP NIC 3.0 is good for the industry and enables one to move from proprietary form factors to SmartNICs

Broadcom's Contributions to OCP NIC 3.0 Specification

• Manageability, Security, Pin definitions, Electrical, Broadcom's early adoption experience mostly positive

Open. Together.

Mechanical, Thermal and Labeling –base requirements

- Broadcom is extending OCP NIC 3.0 from performance NICs
- **SERVER**

Call to Action Adopt OCP NIC 3.0 in server designs Get NIC products recognized as OPC Inspired / OCP accepted

Work with community and share your experiences

Open. Together.

Open. Together.

OCP Global Summit | March 14–15, 2019

