Advanced Packaging
Enabling the Post Moore Era

Eelco Bergman
Sr. Director, Business Development

September 12, 2019
Contents

• ASE Introduction
• Semiconductor Market
• Heterogeneous Integration Drivers
• Advanced Packaging Solutions
• Challenges & Opportunities
• Summary
ASE at a Glance

Established 1984, production commenced at flagship factory in Kaohsiung, Taiwan

Achieved global leadership in IC Assembly, Test & Materials (ATM) in 2003 & maintained #1 OSAT position since

Completed acquisition of Universal Scientific Industrial Co. (USI) to expand DMS/EMS/ODM module & system manufacturing capability

Completed acquisition of SPIL, Ltd. to expand IC assembly & test manufacturing capability

Operating at 19 facilities worldwide, serving multiple markets, applications & geographies

> 90K employees: Global team comprises operations, engineering, R&D, sales & marketing

ASE Technology Holding overall revenue (pro forma) of $13.2B in 2018
ASE Organization

ASE Technology Holding, Co.
Est. 2018

- ASE
 IC Assembly, Test & Materials
 Est. 1984
 2018 Revenue: $5.3B

- SPIL
 IC Assembly & Test
 Est. 1984
 2018 Revenue: $2.9B

- USI
 DMS/EMS/ODM
 Est. 1976
 2018 Revenue: $5.0B
ASE in the Electronics Value Chain

Bridging OSAT and EMS

ASE Group Service

- Engineering Test
- Bumping Assembly
- Wafer Sort
- Component Test
- Substrate

- Module Design
- Module Assembly
- Component Sourcing
- FAE Support

- System Design
- System Assembly
- System Test
- Software Development
- Logistics
- Product Marketing
- Sales & Support

Semiconductor Design
- IDM
- Fabless
- OEM

Wafer Fabrication
- IDM
- Wafer Foundry

Packaging & Test
- IDM
- OSAT
- Wafer Foundry

SIP/Module
- OSAT
- ODM
- DMS/EMS

PCBA/System
- DMS/EMS
- ODM
- IDM
Role and Value of Semiconductor Packaging Increasing

Technology Node vs. Packaging Revenue US $

- 1 nm
- 10 nm
- 100 nm
- 1000 nm

Value of Packaging:
- 3 nm
- 7 nm
- 28 nm
- 90 nm
- 0.35 um
- 1 um
- 3 um
- 10 um
- 50 um
- 250 um
- 500 um

PCB/Substrate:
- 10 um
- 50 um

CMOS:
- 20 B
- 50 B
- 60 B

Packaging Revenue US $:
- 10 B
- 20 B
- 30 B
- 40 B
- 50 B
- 60 B
Drivers for Heterogeneous Integration

- Moore’s law slowing
- Exponential rise in chip development costs
- Decreasing number of leading edge fabs
- SoC scaling cost barriers
 - Increasing cost per transistor on advanced node
 - Increasing SoC die size – wafer yield/die cost impact
- SoC scaling technology barriers
 - Integration challenges for logic, analog and memory
 - Reduced availability of IP for advanced nodes
- Opportunity to leverage mature process nodes for analog and other IP blocks
 - Performance and cost optimized
 - Design re-use / increased flexibility
 - Faster time to market
- Virtual SoC
Advanced Integration Solutions - Foundry

• WLSI – Wafer Level System Integration
 • InFO (Integrated FanOut)
 • InFO_PoP (FO Pkg on Pkg)
 • InFO_AiP (FO with Antenna in Pkg)
 • MUST (Multi-Stack)
 • InFO_oS (FO on Substrate)
 • InFO_MS (FO with Memory on Substrate)
 • InFO_UHD (FO Ultra High Density)
 • CoWoS (Chip on Wafer on Substrate- 2.5D)

• Applications
 Mobile AP, RF FEM, Baseband, etc.
 High Performance Mobile, Network, AI/HPC, etc.

Source: WikiChip (Semicon, July 2019)
Advanced Integration Solutions - IDM

- **HPC Packaging Toolbox**
 - EMIB: Embedded interconnect bridge in organic substrate
 - Foveros: Integration on TSV interposer
 - Co-EMIB: Integration of multiple Foveros structures and memory/IP chiplets using EMIB
 - ODI (Omni Directional Interconnect): Integration on reduced size interposer enabling direct vertical interconnect to top die for power delivery

Source: Intel/EE Times (07.09.19)
Advanced Integration Solutions - OSAT

- Interconnection through organic substrate
 - Line/space: > 10um

- Interconnection through post-fab RDL (FanOut)
 - Line/space: > 2um

- Interconnection through silicon interposer
 - Line/space: > 0.4um

- FanOut FOCoS

- PoP, SiP MCM

PoP, SiP MCM
MCM

• Die partition or multi device integration on organic substrate
• High performance SoC and IP die (i.e. SERDES) integration
• Multi fab/process node device combinations
• Low to medium interconnect density: 100’s-1000’s
• Separation of digital/analog blocks
• Benefits
 • Enables IP reuse with advanced wafer node devices
 • Reduced SoC design and validation time
 • Enable multiple sources for ‘standard’ IP blocks / devices
 • Smaller SoC die size – increased yield
 • Lower bump/die stress – increased reliability

SoC + 16 chiplets
60um die to die spacing min
FanOut / FOCoS

- Homogeneous partition
 - Yield & cost optimization
 - Scalable integration
- Heterogenous die partition
 - Process and performance optimization
- Medium to high interconnect density
 - 1000’s to 10,000’s
- Separation of digital/analog/memory
- Benefits
 - Die size, yield and cost optimization
 - Process node / functionality optimization
 - Short, high density interconnect
 - Increased reliability
2.5D TSV

- Homogeneous partition
 - Yield & cost optimization
 - Scalable integration
- Heterogenous die integration
 - SoC, HBM2 & SerDes
- High interconnect density
 - 10,000’s to 100,000
 - 40um microbump pitch
- Benefits
 - Silicon interconnect performance
 - High bandwidth interface enablement
 - Reduced power
 - Si on Si first level interconnect
 - System board size reduction
Challenges & Opportunities

• Supply chain
 • Chiplet ecosystem enablement
 • IP chiplet type/functionality development roadmap and priorities
 • Pin out/interface standards (by chiplet type/function) where possible (eg. JEDEC HMB ‘chiplet’ spec)
 • KGD performance and reliability criteria definition
 • Business model definition and development
 • Who is selling what to whom? What are associated liability limitations?

• Design & Simulation
 • Co-design flow definition and optimization
 • Development of packaging PDK for various package integration solutions
 • Import and integration capability of multi-device GDS into package design tool
 • Chiplet representation for EDA – ODSA CDX (Chiplet Design Exchange)
 • Multi-physics simulation tools for multi-device integration design validation
 • SiP and virtual SoC system simulation

• DFT/Test
 • Chiplet KGD testing standards & criteria
 • Debug and final test of multi device SiP or virtual SoC
 • Failure isolation and identification
 • ATE vs. SLT
Summary

Convergence of Device and System Integration

Integration for Performance & Cost
PoP / MCM / FOCoS / 2.5D System-in-Package (SiP)

Die Disaggregation

System OEM Driven

PCBA Miniaturization
Thank You

www.aseglobal.com