OPEN POSSIBILITIES.

FWS Guidelines for Connections of Liquid Cooled ITE

Track: CE

FWS Guidelines for Connection of Liquid Cooled ITE

Panelists:

John Gross, Owner, J. M. Gross Engineering John Menoche, Solutions Architect, Vertiv John Musilli, Solutions Architect, CPS

Moderator:

Don Mitchell, Division Manager, Victaulic

GUIDELINES FOR CONNECTION OF LIQUID COOLED ITE TO DATA CENTER FACILITY SYSTEMS

Revision 0.1

Authors:

Don Mitchell (Victaulic), John Menoche (Vertiv), John Gross (JMGross Engineers); Vali Sorell (Microsoft), John Musilli (CPS/Integra)

Contributors/Reviewers: Michael Gonzalez (CEJN); Tim Marquis (Parker), John Bean (GRC); Jorge Padilla(Google); Jeremy Rice, (Google); Nishi Ahuja, (Intel); Mark Lommers; Cosimo Pecchiol (Alfa Laval); Le Yu; Brian Evans, Rich Donaldson, Thomas Squillo, Jack Kolar; Bret Lehman (PCX Corp), Madhusudan Iyengar (Google), Caleb Lusk (Rittal), Hamid Keyhani, Rolf Brink (Asperitas), John Fernandes (Facebook), Sean Sivapalan (Intel), Rob Bunger (Schneider); Isabel Rao (CoollT), Raul Alvarez (Submer); Alex McManus (GRC); Rich Whitmore (Motivair); Greg Towsley (Ebara)

Connecting ITE to FWS Things to Consider

Design Considerations

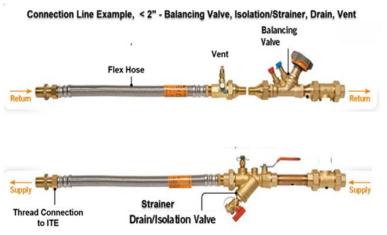
- Benefits of Standardization of Connections
- Compatibility with OCP Advanced Cooling Solutions
- Pipe Diameter Standardization
- Vendor Product FWS Connection Standardization
- Dewpoint Considerations
- Leak Detection/Collection/Protection considerations
- Key Components / Functions of Connection Lines

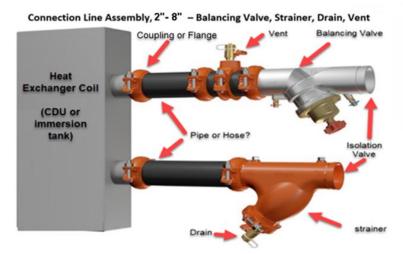
Appendix A. Re- Connection Considerations

- A1: Thread Connection Considerations
- A2: Grooved Coupling Considerations
- A3: Flange Considerations

Appendix B: Fixed Connection Considerations

- B1: Commissioning Weld Connections
- B2: Commissioning Fused, Crimped Connections





Connecting ITE to FWS Things to Consider

- Vent, drain ports Simplify exchange/maintenance of ITE and CDU. Drain ports are often incorporated with the strainer
- Strainers prevent contamination of heat exchanger coils.
- Flushing- During initial commissioning and major system updates, pipe systems should be flushed requires flush connections.
- Metering points pressure/temp ports for dP and flow measurement. Many ITE and CDU solutions have ports included.

Connection Leakage: Inspection Vs Protection

COOLING FACILITIES

Ability to Prevent Leakage by Installation Inspection

	Inspection Method to Prevent		MTBF Data	Leakage/Failure Protection		
	Leakage	Failure	Data	Recommendation		
ReConnection Methods						
Threaded	None	Visual	N/A	leakage detection and protection recommended - failure unlikely		
Flange	Torque check	Torque check	N/A	Leak detection/protection recommended. Re-torque verification over life of pipe of critical joints		
Grooved Coupling*	Visual	Visual	>185 million hours	Auditable record of proper installation inspection required to avoid additional protection.		
Fixed Connection Methods						
Weld	X-Ray	X-Ray	N/A	Record of Radiography to avoid additional protection		
Crimped/pressed	???	???	N/A	Leak detection & failure protection recommended Visual inspection may provide some validation		
Fused	???	???	N/A	Leak detection & failure protection recommended		

Pressure test is always a requirement

*Grooved Coupling performance based on mission critical standards of design, quality control, certified inspection process

Pipe movement (thermal, vibration, building, seismic) can create leakage and possible separation in pipe systems if not addressed

Standardizing the FWS to ITE Connection Point

ADVANCED COOLING FACILITIES

Rack and Door Pipe Connection
Thread Standards - BSPP

1"/DN25

1.25"/DN40

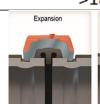
Thread
Connection
Standardization
Benefits:

- Vendors currently standardize on single thread type, ship adaptors as needed
- · Thread verification is a key issue
- · Metric thread is global and growing.
- Different thread types have different installation methods
- · Quick disconnects attach via thread

Thread Installation, BSPP

- · O Ring replace each connection
- · Thread tape -
- · clean threads, apply tape with each installation.
- Ensure tape does not protrude into water flow
- Inspect for leakage on pressure test & 4 hours later

Standardizing the FWS to ITE Connection Point



COOLING FACILITIES

Connections: 2"/DN50 to 8"/DN200
Class 150 Flanges Vs Mission Critical Grooved Couplings

	Class 150 Flange	Mission Critical Coupling	
Bolt Count	4 to 8 bolts	2 bolts	
Alignment adjustment	none	Multi axis alignment	
Movement	None, requires torque verification	design feature	
Vibration Mitigation	None	design feature	
Inspection method to	torque + pressure test;	Visual inspection + pressure test =	
prevent leakage	re-torque as needed	certified for life of pipe system	
MTBF	N/A	>185 million hours	

Connection Guidance Workstream

Appendix A. Re- Connection Considerations

A1: Thread Connection Considerations

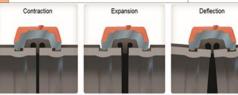
A2: Grooved Coupling Considerations

A3: Flange Considerations

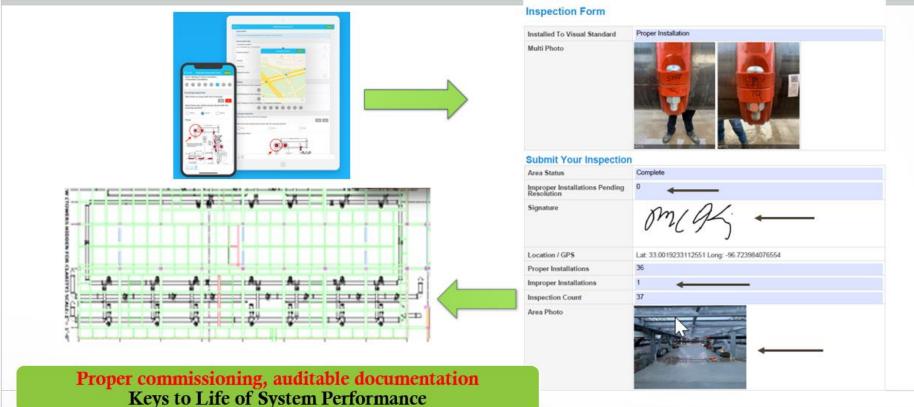
Appendix B: Fixed Connection Considerations

B1: Commissioning Weld Connections

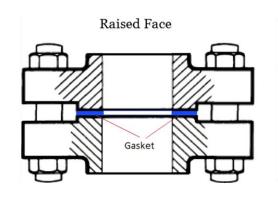
B2: Commissioning Fused, Crimped Connections

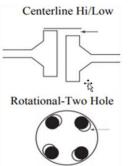

App A2 Grooved Coupling Risk Factors

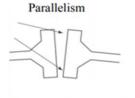
Variables to Control	Potential Issue	Non failure Detection Method
Coupling not properly installed	Coupling housing must be fully engaged in groove	Visual Inspection + Pressure Test
Improper groove geometry	Coupling housing must be fully engaged in groove	Visual Inspection + Pressure Test
Pipe surface imperfections	Water seepage due to microchannels	Visual Inspection + Pressure Test


Alignment, Movement, Vibration Accommodations

App A2: Mission Critical Grooved Coupling Visual Inspection Prevents Issues


App A3: Flange Considerations




Key Actions, Issues to Avoid Flange Leakage

- Alignment Ensuring proper alignment of joint before tightening is critical
- Gasket Creep Flange gaskets typically relax after loading, within the first 4-6 hours.
- **Torque** minimize uneven loading of gaskets, tighten bolts in a crisscross pattern. reverified after 4 hours
- Maintenance Vibration, pipe movement require re-torque of bolts

App B1: Weld Risk vs Radiography

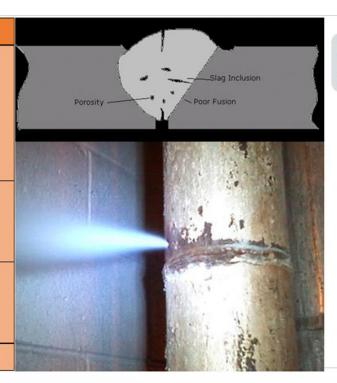
ADVANCED COOLING FACILITIES

Weld Challenges

Joint quality -

- internal cracking
- porosity
- bubble pockets
- lack of fusion

Pipe interior - slag build-up


- Flow variation
- water contamination

Heat Affected Zone -

- accelerated corrosion near

weld

Distortion, alignment stress

Radiography recommended for high severity risk locations

Weld Failure modes include:

Separation

- poor / incomplete fusion
- Cracks

Typically discovered at pressure test

Accelerated corrosion

- porosities
- Regions near weld (HAZ)

Leaks 3-10 years after installation

App B2: Fusion – Process Dependent No Inspection Verification Method

ADVANCED	
COOLING	
FACILITIES	

Variables to Control	Potential Issue	Detection Method	
Depth of fusion section	Is pipe fully inserted into connection?		
Transition Time	Connection cool down can result in		
Transition fille	incomplete insertion		
Temperature, jobsite	Affects cool down rate, heating time		
Not using enough heat	If heat time is insufficient, will not	To be used in areas of elevated severity risk, fused connections should provide method to verify proper installation.	
	make full connection		
Cleanliness of Pipe	Incomplete fusion area (oil, dirt)		
Matan contact	Any water contact on fusion area will		
Water contact	interfere with proper fusion		
Support during Cool Down	Movement during cooling weakens		
	bond		
Adjustment during souldown	Twisting, adjusting alignment after 5		
Adjustment during cooldown	seconds weakens connection		
No. of the same	> 3 degrees of mis-alignment may	Alignment verification	
Mis-alignment	affect bond		

Call to Action

- Get involved in OCP Advanced Cooling Facility Sub-Project:
 - Weekly OCP ACF calls Tuesdays 1100 ET (UTC-4) https://global.gotomeeting.com/join/952298085
 - https://www.opencompute.org/wiki/Data_Center_Facility/ACF-Advanced_Cooling_Facilities
- Mail List: https://ocp-all.groups.io/g/ocp-acf

Open Discussion

