OPEN POSSIBILITIES.

Confidential Compute solutions in Arm[®] ecosystem

Security

Confidential Compute solutions in Arm[®] ecosystem

Sridhar Valluru Director Product Management Arm®

OPEN POSSIBILITIES.

Confidential Compute: Threats Addressed

- Protect code/data from higher privileged software (eg: host, hypervisor, hardware agents) and administrators
- Strong isolation technologies to support multi-tenancy
- Encrypt memory to prevent physical access and cold boot attacks
- Encrypt multiple confidential regions with different keys
- Protect payload on IO links from interposer cards and physical probes
- Securely and uniquely bind device functions to confidential processes

OPEN POSSIBILITI<mark>ES</mark>.

Arm v8.4-A Architecture for Security

Architecture Features in Arm v8.4-A

TrustZone®

- Protected from Host OS/Hypervisor
- Platform security use cases for SiP + OEM
- Specific tool chains/Trusted OS
- Limited resource

Virtualization

- Can be used to protect from host primary OS kernel
- Standard OS development
- Limited only by available memory

S-EL2 Virtualization

- Complementary to first two
- Improves modularity and isolation in TrustZone[®]

OPEN POSSIBILITIES.

Security State / PA Space	Non-Secure PA	Secure PA
Non-Secure	Allow	Block
Secure	Allow	Allow

Arm v9+ Architecture for Security: RME

Architecture to protect application code and data

- TrustZone[®] 2 world to RME 4 worlds
 - Secure \rightarrow Secure & Root
 - Non-Secure → Non-Secure & Realm
- Realm space is isolated from Secure & Non-Secure
 - Access violations results in page faults
- RME is implemented in hardware and firmware
 - Open source RMM and Monitor code
 - Resource allocation managed by hypervisor
 - Access management by Monitor code
- No change in programming model
 - Realm an extension of Non-Secure
 - Interrupt model remains the same

RME: Realm Management Extension RMM: Realm Management Monitor RMI: Realm Management Interface RSI: Realm Services Interface

Confidential Compute TCB

Trust needs to extend to any component where code/data reside

Confidential Compute needs Trust extended beyond CPU's

- Memory controllers
 - Separate keys for worlds
 - Fresh Keys for individual Realms
- IO (CXL and PCIe) Controllers
 - Enable device assignment
 - Security support defined by SIG/Consortium

Attestation For end user confidence in platform

- Hardware Enforced Security (HES) for Arm Confidential Compute Architecture
 - Initiates and measures AP Boot

•

- Key generation and management
- Collect measurements for the system
- Provides on-demand Attestation reports
 Separate from cloud provider attestation

Arm Confidential Compute Resources

https://www.arm.com/armcca

https://developer.arm.com/armcca

Contact: armcca@arm.com

OPEN POSSIBILITIES.

Call to Action

Need for a subgroup to address common industry Confidential Compute issues

OPEN POSSIBILITI<mark>ES</mark>.

Need for OCP Security sub-group to address common industry confidential compute issues

- Device attestation report standardization and verification
- Standardization of device isolation granularity Security context is same or smaller than Virtualization context
- Life cycle and supply chain management
- Independent device security certification

Visit Arm @ OCP 2021

Booth (B11)

- Demos: Arm SystemReady Certified Hardware
 - Arm SystemReady, SR ServerReady:
 - Ampere Altra 'Mt Jade' Platform (Wiwynn)
 - Arm SystemReady, ES Embedded Server:
 - Hawkeye Tech HK-6010
 - SolidRun Macchiatobin
 - Arm SystemReady, IR IoT:
 - Raspberry Pi

Talks

- Wed, Nov 10 @ 8:35am Room 211A-D
 Cost Modeling Analysis for Heterogeneous Integration of Chiplets, Javier DeLaCruz (Arm), Mudasir Ahmad (Google), Anu Ramamurthy (Microchip Technology)
- Wed, Nov 10 @ 10:00am Room 220C
 Confidential Compute Solutions in Arm Ecosystem, Sridhar Valluru (Arm)
- Wed, Nov 10 @ 1:00pm Room 210C
 Introduction to Open System Firmware (OSF) at OCP, Dong Wei (Arm), Ryan O'Leary (Google), Anjaneya "Reddy" Chagam (Intel)
- Wed, Nov 10 @ 2:30pm Room 210BF
 Arm and Ampere support for Standards-based
 OpenSource Firmware, Samer El-Haj-Mahmoud (Arm), Peter Pouliot (Ampere)

Thank you!

